In this study, cortical cells resultant from wool fibers were loaded with TiO2 nanoparticles in a hydrothermal process and were then engineered as organic-nonorganic hybrid composite photocatalysts for both photodegradation of organic dyes and photoreduction of heavy metal ions. The microstructure and photocatalytic properties of TiO2 modified cortical cells (i.e. both orthocortical and paracortical cells) were systematically characterized using a series of analytical techniques including FESEM, TEM, element analysis, Mott–Schottky curve, BET specific surface area, Zeta potentials, as well as XRD, FTIR, XPS, DRS, PL, UPS, EDS and ESR spectra. Their photocatalytic performance and trapping experiments of the TiO2 modified cortical cells were measured in the photodegradation of methylene blue (MB) dye and Congo Red (CR) dye as well as the photoreduction of Cr(VI) ions under visible light irradiation. It was found that anatase TiO2 nanoparticles were chemically grafted on the surface of the two cortical cells via O–Ti4+/O–Ti3+ bonds, and that TiO2 nanoparticles were formed inside the orthocortical cells in the hydrothermal process. The TiO2 modified orthocortical and paracortical cells possessed much higher photocatalytic efficiency than the commercially available TiO2 nanoparticle powder, Degussa P25, in the photodegradation of cationic MB dye and photoreduction of Cr(VI) ions, while their photocatalytic efficiency in the photodegradation of anionic CR dye is smaller because of their greater negative Zeta potentials and photogenerated holes as the main reactive radical species. In comparison with the TiO2 modified paracortical cells, the higher photocatalytic efficiency of the TiO2 modified orthocortical cells was demonstrated in the photodegradation of MB dye solution and this might be due to both the S-doped TiO2 nanoparticles infiltrated into the naturally hydrophilic orthocortical cells and the primary reactive radical species of photogenerated holes being trapped in the cells.
To reveal the regularity of variation in the rare earth occurrence states of weathered crust elution-deposited rare earth ores, ore samples from different weathering crust layers were obtained by performing the sequential extraction procedure. The order of rare earth contents firmly obeyed the following sequence: the weathered layer > humic layer > partly weathered layer. The occurrence states of rare earth elements were mainly the ion exchange state, carbonate bound state, iron–manganese oxide state, organic binding state and residual state. The proportions of rare earth elements found in the rare earth ion exchange state of the weathered layer, humic layer and partly weathered layer were 78.55%, 73.53% and 53.88%, respectively. The light rare earth elements (LREEs) found in the rare earth ion exchange state were enriched in the upper part of the weathering crust, while the heavy rare earth elements (HREEs) were enriched in the lower part. There were also obvious negative anomalies in the content of cerium in the ion exchange state. The content of rare earth elements found in the carbonate bound state was small, and the rare earth partition pattern was basically consistent with that of the ion exchange state, which had little effect on the differentiation of the rare earth elements. The iron–manganese oxide state was mainly enriched with cerium, and the content of cerium increased with the depth of the weathering crust. The iron–manganese oxide state was the main factor causing the phenomenon of the anomaly in the cerium content. Meanwhile, the iron oxides in the iron–manganese oxide state were mainly hematite and goethite. The organic binding state mainly beneficiated yttrium and cerium by complexation and certain adsorption. The content of elements found in the rare earth residual state was related to the degree of weathering and reflected the release sequence of rare earth elements in the mineralization process. Clarifying the rare earth occurrence states is conducive to better revealing the metallogenic regularity of weathered crust elution-deposited rare earth ores. In addition, the results can provide a valuable reference for expanding the available rare earth resources and the efficient comprehensive utilization of rare earth ore.
In order to reveal the influence of ammonium salts on the rare earth leaching process of weathered crust elution-deposited rare earth ores, ammonium acetate, ammonium chloride, and ammonium sulfate were used as leaching agents. The effects of the leaching agent on the rare earth leaching efficiency and the expansion, dissolution, and transformation behavior of clay minerals in the rare earth leaching process were studied. The results showed that rare earth leaching efficiency followed the order ammonium acetate > ammonium chloride > ammonium sulfate, with values of 90.60%, 85.96%, and 84.12%, respectively. The swelling ratio of clay mineral followed the order ammonium acetate < ammonium chloride < ammonium sulfate; the clay mineral swelling ratio was 2.09% when ammonium acetate was the leaching agent. Thermogravimetric analysis showed that the interlayer water content was the lowest when ammonium acetate was used as the leaching agent. Under the conditions of different leaching agents, the clay mineral contents changed from illite and halloysite to smectite and kaolinite. When ammonium acetate was used as the leaching agent, the relative conversion of illite was 1.49%, and that of smectite was only 0.17%. SEM analysis showed that the clay minerals expanded and dissolved obviously when ammonium chloride and ammonium sulfate were used as the leaching agents. Meanwhile, the clay mineral layered structure was relatively complete when ammonium acetate was used as the leaching agent. Therefore, when ammonium acetate was used as the leaching agent, it had the least effect on the swelling, dissolution, and transformation of clay minerals. This can provide a theoretical basis for the safe production of weathered crust elution-deposited rare earth ore, and for the screening of green and efficient leaching agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.