A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes.With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other.The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification.
Video LinkThe video component of this article can be found at
This work provides a novel quantitative comparison of batch versus continuous microalgal lipid production in the wild type and starchless mutant strain of Acutodesmus obliquus. Both strains showed higher TAG yields on light under batch operation compared to continuous nitrogen limitation. The starchless mutant showed 0.20gTAGmol for batch and 0.12gTAGmol for continuous operation, while the wildtype only showed 0.16gTAGmol for batch and 0.08gTAGmol for continuous operation. Also, higher TAG contents were found under batch starvation (26% of dry weight for the wildtype and 43% of dry weight for starchless mutant) compared to continuous cultivations (16% of dry weight for the wildtype and 33% of dry weight for starchless mutant). Starch acts as the favoured storage metabolite during nitrogen limitation in A. obliquus, whereas TAG is only accumulated after starch reaches a cellular maximum of 40% of dry weight.
Vaccines pave the way out of the SARS-CoV-2 pandemic. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.