TAC3 is a member of tachykinins, and its gene product neurokinin B (NKB) has recently emerged as a key regulator for LH through modulation of kisspeptin/GnRH system within the hypothalamus. In fish models, TAC3 not only encodes NKB but also a novel tachykinin-like peptide called NKB-related peptide (NKBRP), and the pituitary actions of these TAC3 gene products are still unknown. Using grass carp as a model, the direct effects and postreceptor signaling for the 2 TAC3 products were examined at the pituitary level. Grass carp TAC3 was cloned and confirmed to encode NKB and NKBRP similar to that of other fish species. In carp pituitary cells, NKB and NKBRP treatment did not affect LH release and gene expression but up-regulated prolactin (PRL) and somatolactin (SL)α secretion, protein production, and transcript expression. The stimulation by these 2 TAC3 gene products on PRL and SLα release and mRNA levels were mediated by pituitary NK2 and NK3 receptors, respectively. Apparently, NKB- and NKBRP-induced SLα secretion and transcript expression were caused by adenylate cyclase/cAMP/protein kinase A, phospholipase C/inositol 1,4,5-triphosphate/protein kinase C and Ca(2+)/calmodulin/Ca(2+)/calmodulin-dependent protein kinase II activation. The signal transduction for the corresponding responses on PRL release and mRNA expression were also similar, except that the protein kinase C component was not involved. These findings suggest that the 2 TAC3 gene products do not play a role in LH regulation at the pituitary level in carp species but may serve as novel stimulators for PRL and SLα synthesis and secretion via overlapping postreceptor signaling mechanisms coupled to NK2 and NK3 receptors, respectively.
Secretoneurin (SN) is a 33- to 34-amino acid neuropeptide derived from secretogranin-II, a member of the chromogranin family. We previously synthesized a putative goldfish (gf) SN and demonstrated its ability to stimulate LH release in vivo. However, it was not known whether goldfish actually produced the free SN peptide or whether SN directly stimulates LH release from isolated pituitary cells. Using a combination of reverse-phase HPLC and mass spectrometry analysis, we isolated for the first time a 34-amino acid free gfSN peptide from the whole brain. Moreover, Western blot analysis indicated the existence of this peptide in goldfish pituitary. Immunocytochemical localization studies revealed the presence of SN immunoreactivity in prolactin cells of rostral pars distalis of the anterior pituitary. Additionally, we found that magnocellular cells of the goldfish preoptic region are highly immunoreactive for SN. These neurons send heavily labeled projections that pass through the pituitary stalk and innervate the neurointermediate and anterior lobes. In static 12-h incubation of dispersed pituitary cells, application of SN antiserum reduced LH levels, whereas 1 and 10 nM gfSN, respectively, induced 2.5-fold (P < 0.001) and 1.9-fold (P < 0.01) increments of LH release into the medium, increases similar to those elicited by 100 nM concentrations of GnRH. Like GnRH, gfSN elevated intracellular Ca(2+) in identified gonadotrophs. Whereas we do not yet know the relative contribution of neural SN or pituitary SN to LH release, we propose that SN could act as a neuroendocrine and/or paracrine factor to regulate LH release from the anterior pituitary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.