Synchronization of distributed neural circuits is required for many behavioral tasks, but the mechanisms that coordinate these circuits are largely unknown. The modular local circuits that control crayfish swimmerets are distributed in four segments of the CNS, but when the swimmeret system is active their outputs are synchronized with a stable intersegmental phase difference of 0.25, an example of metachronal synchronization (Izhikevich, 2007). In each module, coordinating neurons encode detailed information about each cycle of the module's motor output as bursts of spikes, and their axons conduct this information to targets in other segments. This information is both necessary and sufficient for normal intersegmental coordination. In a comprehensive set of recordings, we mapped the synaptic connections of two types of coordinating neurons onto their common target neurons in other segments. Both types of coordinating axons caused large, brief EPSPs in their targets. The shape indices of these EPSPs are tuned to transmit the information from each axon precisely. In each target neuron's own module, these bursts of EPSPs modified the phase of the module's motor output. Each axon made its strongest synapse onto the target neuron in the nearest neighboring segment. Its synapses onto homologous targets in more remote segments were progressively weaker. Each target neuron decodes information from several coordinating axons, and the strengths of their synapses differ systematically. These differences in synaptic strength weight information from each segment differently, which might account for features of the system's characteristic metachronal synchronization.
The limbs on different segments of the crayfish abdomen that drive forward swimming are directly controlled by modular pattern-generating circuits. These circuits are linked together by axons of identified coordinating interneurons. We described the distributions of these neurons in each abdominal ganglion and monitored their firing during expression of the swimming motor pattern. We analyzed the timing, the numbers of spikes, and the duration of each burst of spikes in these coordinating neurons. To see what information these neurons encoded, we correlated these parameters with the timing, durations, and strengths of bursts of spikes in motor axons from the same modules. During the power-stroke phase of each output cycle, the anterior-projecting neurons fired bursts of spikes that encoded information about the start-time, duration, and strength of each burst of spikes in power-stroke motor neurons from the same module. When the period and intensity of the motor output fluctuated, the bursts of spikes in these neurons tracked these fluctuations accurately. Each additional spike in these neurons signified an increase in the strength of the power-stroke burst. The posterior-projecting neurons that fired during the return-stroke phase encoded similar information about the return-stroke motor neurons. Although homologous neurons from different ganglia were qualitatively similar, neurons from posterior ganglia fired significantly more spikes per burst than those from more anterior ganglia, a segmental gradient that correlates with the normal posterior-to-anterior phase progression of limb movements. We propose that this gradient and a similar gradient in the durations of bursts in power-stroke motor neurons might reflect a hitherto-undetected difference in the excitation or intrinsic excitability of swimmeret modules in different segments.
We used a polyclonal antiserum against histamine to map histaminelike immunoreactivity (HLI) in whole mounts of the segmental ganglia and stomatogastric ganglion of crayfish and lobster. Carbodiimide fixation permitted both HRP-conjugated and FITC-conjugated secondary antibodies to be used effectively to visualize HLI in these whole mounts. Two interneurons that send axons through the inferior ventricular nerve (ivn) and the stomatogastric nerve to the stomatogastric ganglion had strong HLI, both in crayfish and in lobster. These ivn interneurons were known from other evidence to be histaminergic. The neuropil of the stomatogastric ganglion in both crayfish and lobster contained brightly labeled terminals of axons that entered the ganglion from the stomatogastric nerve. No neuronal cell bodies in this ganglion had HLI. Each segmental ganglion contained at least one pair of neurons with HLI. Some neurons in the subesophageal ganglion and in each thoracic ganglion labeled very brightly. Axons of projection interneurons with strong HLI occurred in the dorsal lateral tracts of each segmental ganglion, and sent branches to the lateral neurophils and tract neurophils of each ganglion. All the labeled neurons were interneurons; no HLI was observed in peripheral nerves.
During normal forward swimming, the swimmerets on neighboring segments of the crayfish abdomen make periodic power-stroke movements that have a characteristic intersegmental difference in phase. Three types of intersegmental interneurons that originate in each abdominal ganglion are necessary and sufficient to maintain this phase relationship. A cellular model of the intersegmental coordinating circuit that also produces the same intersegmental phase has been proposed. In this model, coordinating axons synapse with local interneurons in their target ganglion and form a concatenated circuit that links neighboring segmental ganglia. This model assumed that coordinating axons projected to their nearest-neighboring ganglion but not farther. We tested this assumption in two sets of experiments. If the assumption is correct, then blocking synaptic transmission in an intermediate ganglion should uncouple swimmeret activity on opposite sides of the block. We bathed individual ganglia in a low Ca(2+)-high Mg(2+) saline that effectively silenced both motor output from the ganglion and the coordinating interneurons that originated in it. With this block in place, other ganglia on opposite sides of the block could nonetheless maintain their normal phase difference. Simultaneous recordings of spikes in coordinating axons on opposite sides of the blocked ganglion showed that these axons projected beyond the neighboring ganglion. Selective bilateral ablation of the tracts in which these axons ran showed that they were necessary and usually sufficient to maintain coordination across a blocked ganglion. We discuss revisions of the cellular model of the coordinating circuit that would incorporate these new results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.