The daily timing of circadian (Х24-h) controlled activity in many animals exhibits seasonal adjustments, responding to changes in photoperiod (day length) and temperature. In Drosophila melanogaster, splicing of an intron in the 3 untranslated region of the period (per) mRNA is enhanced at cold temperatures, leading to more rapid daily increases in per transcript levels and earlier "evening" activity. Here we show that daily fluctuations in the splicing of this intron (herein referred to as dmpi8) are regulated by the clock in a manner that depends on the photoperiod (day length) and temperature. Shortening the photoperiod enhances dmpi8 splicing and advances its cycle, whereas the amplitude of the clock-regulated daytime decline in splicing increases as temperatures rise. This suggests that at elevated temperatures the clock has a more pronounced role in maintaining low splicing during the day, a mechanism that likely minimizes the deleterious effects of daytime heat on the flies by favoring nocturnal activity during warm days. Light also has acute inhibitory effects, rapidly decreasing the proportion of dmpi8-spliced per transcript, a response that does not require a functional clock. Our results identify a novel nonphotic role for phospholipase C (no-receptor-potential-A [norpA]) in the temperature regulation of dmpi8 splicing.Circadian rhythms are driven by cellular oscillators known as clocks or pacemakers and are an important aspect of the temporal organization observed in a wide range of organisms from bacteria to humans (11,12). These clocks exhibit free-running (self-sustaining) periods of Х24 h in the absence of environmental cues. Nonetheless, an important adaptive feature of circadian oscillators is that they are synchronized (entrained) by daily changes in environmental modalities, most notably visible light and ambient temperature.Light is almost certainly the predominant entraining agent in nature. Under natural conditions the light-dark (LD) cycle aligns the phases of clocks and evokes daily adjustments in the approximately 24-h endogenous periods of these oscillators such that they precisely match the 24-h solar day. The duration of day length (photoperiod) can modify the temporal alignment between a circadian rhythm and local time (22). A physiologically relevant advantage of this inherent flexibility of clocks is that the daily distributions of physiological and behavioral rhythms are not rigidly locked to local time but can be adjusted for seasonal changes in day length.Despite the obvious importance of photoperiod, ambient temperature is also a key environmental modality regulating the timing of circadian rhythms (50). This makes intuitive sense, because in temperate latitudes seasonal changes in day length are also accompanied by predictable changes in average daily temperatures. Thus, circadian clocks play an important role in endowing organisms with the ability to anticipate daily and seasonal changes in environmental conditions, resulting in physiological and behavioral rhythms that occu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.