This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate.
BackgroundEducational psychology research has linked fluid intelligence with learning and memory abilities and neuroimaging studies have specifically associated fluid intelligence with event related potentials (ERPs). The objective of this study is to find the relationship of ERPs with learning and memory recall and predict the memory recall score using P300 (P3) component.MethodA sample of thirty-four healthy subjects between twenty and thirty years of age was selected to perform three tasks: (1) Raven’s Advanced Progressive Matrices (RAPM) test to assess fluid intelligence; (2) learning and memory task to assess learning ability and memory recall; and (3) the visual oddball task to assess brain-evoked potentials. These subjects were divided into High Ability (HA) and Low Ability (LA) groups based on their RAPM scores. A multiple regression analysis was used to predict the learning & memory recall and fluid intelligence using P3 amplitude and latency.ResultsBehavioral results demonstrated that the HA group learned and recalled 10.89 % more information than did the LA group. ERP results clearly showed that the P3 amplitude of the HA group was relatively larger than that observed in the LA group for both the central and parietal regions of the cerebrum; particularly during the 300–400 ms time window. In addition, a shorter latency for the P3 component was observed at Pz site for the HA group compared to the LA group. These findings agree with previous educational psychology and neuroimaging studies which reported an association between ERPs and fluid intelligence as well as learning performance.ConclusionThese results also suggest that the P3 component is associated with individual differences in learning and memory recall and further indicate that P3 amplitude might be used as a supporting factor in standard psychometric tests to assess an individual’s learning & memory recall ability; particularly in educational institutions to aid in the predictability of academic skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.