In this paper, to solve the problem of detecting network anomalies, a method of forming a set of informative features formalizing the normal and anomalous behavior of the system on the basis of evaluating the Hurst (H) parameter of the network traffic has been proposed. Criteria to detect and prevent various types of network anomalies using the Three Sigma Rule and Hurst parameter have been defined. A rescaled range (RS) method to evaluate the Hurst parameter has been chosen. The practical value of the proposed method is conditioned by a set of the following factors: low time spent on calculations, short time required for monitoring, the possibility of self-training, as well as the possibility of observing a wide range of traffic types. For new DPI (Deep Packet Inspection) system implementation, algorithms for analyzing and captured traffic with protocol detection and determining statistical load parameters have been developed. In addition, algorithms that are responsible for flow regulation to ensure the QoS (Quality of Services) based on the conducted static analysis of flows and the proposed method of detection of anomalies using the parameter Hurst have been developed. We compared the proposed software DPI system with the existing SolarWinds Deep Packet Inspection for the possibility of network traffic anomaly detection and prevention. The created software components of the proposed DPI system increase the efficiency of using standard intrusion detection and prevention systems by identifying and taking into account new non-standard factors and dependencies. The use of the developed system in the IoT communication infrastructure will increase the level of information security and significantly reduce the risks of its loss.
The measuring instruments have some errors in the measurement of high water cut production wells, and many domestic oil fields are also in high water cut state. The measured data from the conventional production logging instrument are all almost inaccurate. This project has designed a staggered probe array flow meter well logging apparatus based on the characteristic of electromagnetic wave specific retention meter that can fully cover the wellbore fluid and improve flow measurement accuracy. According to the application in horizontal wells, the accuracy of this measuring instrument now has been proved to be more than 90% and can meet the requirements of production logging interpretation in horizontal wells.
The article analyzes the advantage and disadvantage of part lacking fidelity searching algorithm, based on early ending technology thought. Given the disadvantage of the partial distortion search (PDS) algorithm, it brings up one kind of improved method which is similar to it. The improved algorithm also calculates sum of absolute difference (SAD) once within a row and add it to the block pixel SAD, but the two disadvantages of part lacking fidelity searching algorithm has been improved. The results of related experiment show that the early termination of fine granularity adaptive threshold and search points in the levels of early termination of the introduction of adaptive strategies used in the paper improves the speed moving estimation. This will promote the transmission quality of network video frequency to a new higher grade.
Leach (low energy adaptive clustering hierarchy) algorithm is a self-clustering topology algorithm. Its execution process is cyclical. Each cycle is divided into two phases: cluster building phase and stable data communication phase. In the stage of cluster building, the adjacent nodes cluster dynamically and randomly generate cluster heads. In the data communication phase, the nodes in the cluster send the data to the cluster head, and the cluster head performs data fusion and sends the results to the aggregation node. Because the cluster head needs to complete data fusion, communication with the convergence node and other works, the energy consumption is large. Leach algorithm can ensure that each node acts as cluster head with equal probability, so that the nodes in the network consume energy relatively evenly. The basic idea of Leach algorithm is to randomly select cluster head nodes in a circular way. It evenly distributes the energy load of the whole network to each sensor node in the network. It can reduce network energy consumption and improve network life cycle. Leach repeatedly performs cluster refactoring during its operation. This paper studies the parameter detection of wireless sensor network based on Leach algorithm on the on-chip embedded debugging system. Because the classical low-power adaptive clustering layered protocol (Leach) has the problem of energy imbalance and short node life cycle, this paper uses embedded debugging technology based on Leach algorithm and the residual energy and position of nodes in wireless sensor networks were tested for research. This Leach algorithm uses the concept of wheel. Each round consists of two phases: initialization and stabilization. In the initialization stage, each node generates a random number between 0 and 1. If the random number generated by a node is less than the set threshold T (n), the node publishes a message that it is a cluster head. Through the research on the parameter detection, the simulation results show that the research in this paper has good feasibility and rationality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.