Background Health care, in recent years, has made great leaps in integrating wireless technology into traditional models of care. The availability of ubiquitous devices such as wearable sensors has enabled researchers to collect voluminous datasets and harness them in a wide range of health care topics. One of the goals of using on-body wearable sensors has been to study and analyze human activity and functional patterns, thereby predicting harmful outcomes such as falls. It can also be used to track precise individual movements to form personalized behavioral patterns, to standardize the concept of frailty, well-being/independence, etc. Most wearable devices such as activity trackers and smartwatches are equipped with low-cost embedded sensors that can provide users with health statistics. In addition to wearable devices, Bluetooth low-energy sensors known as BLE beacons have gained traction among researchers in ambient intelligence domain. The low cost and durability of newer versions have made BLE beacons feasible gadgets to yield indoor localization data, an adjunct feature in human activity recognition. In the studies by Moatamed et al and the patent application by Ramezani et al, we introduced a generic framework (Sensing At-Risk Population) that draws on the classification of human movements using a 3-axial accelerometer and extracting indoor localization using BLE beacons, in concert. Objective The study aimed to examine the ability of combination of physical activity and indoor location features, extracted at baseline, on a cohort of 154 rehabilitation-dwelling patients to discriminate between subacute care patients who are re-admitted to the hospital versus the patients who are able to stay in a community setting. Methods We analyzed physical activity sensor features to assess activity time and intensity. We also analyzed activities with regard to indoor localization. Chi-square and Kruskal-Wallis tests were used to compare demographic variables and sensor feature variables in outcome groups. Random forests were used to build predictive models based on the most significant features. Results Standing time percentage ( P <.001, d =1.51), laying down time percentage ( P <.001, d =1.35), resident room energy intensity ( P <.001, d =1.25), resident bed energy intensity ( P <.001, d =1.23), and energy percentage of active state ( P =.001, d =1.24) are the 5 most statistically significant features in distinguishing outcome groups at baseline. The energy intensity of the resident room ( P <.001, d =1.25) was achieved by capturing indoor localization information. Random forests revealed that...
Machine learning classifiers often stumble over imbalanced datasets where classes are not equally represented. This inherent bias towards the majority class may result in low accuracy in labeling minority class. Imbalanced learning is prevalent in many real-world applications, such as medical research, network intrusion detection, and fraud detection in credit card transactions, etc. A good number of research works have been reported to tackle this challenging problem. For example, Synthetic Minority Over-sampling TEchnique (SMOTE) and ADAptive SYNthetic sampling approach (ADASYN) use oversampling techniques to balance the skewed datasets. In this paper, we propose a novel method that combines a Weighted Oversampling Technique and ensemble Boosting method (WOTBoost) to improve the classification accuracy of minority data without sacrificing the accuracy of the majority class. WOTBoost adjusts its oversampling strategy at each round of boosting to synthesize more targeted minority data samples. The adjustment is enforced using a weighted distribution. We compare WOTBoost with other four classification models (i.e., decision tree, SMOTE + decision tree, ADASYN + decision tree, SMOTEBoost) extensively on 18 public accessible imbalanced datasets. WOTBoost achieves the best G mean on 6 datasets and highest AUC score on 7 datasets.
Background On-body wearable sensors have been used to predict adverse outcomes such as hospitalizations or fall, thereby enabling clinicians to develop better intervention guidelines and personalized models of care to prevent harmful outcomes. In our previous work, we introduced a generic remote patient monitoring framework (Sensing At-Risk Population) that draws on the classification of human movements using a 3-axial accelerometer and the extraction of indoor localization using Bluetooth low energy beacons, in concert. Using the same framework, this paper addresses the longitudinal analyses of a group of patients in a skilled nursing facility. We try to investigate if the metrics derived from a remote patient monitoring system comprised of physical activity and indoor localization sensors, as well as their association with therapist assessments, provide additional insight into the recovery process of patients receiving rehabilitation. Objective The aim of this paper is twofold: (1) to observe longitudinal changes of sensor-based physical activity and indoor localization features of patients receiving rehabilitation at a skilled nursing facility and (2) to investigate if the sensor-based longitudinal changes can complement patients’ changes captured by therapist assessments over the course of rehabilitation in the skilled nursing facility. Methods From June 2016 to November 2017, patients were recruited after admission to a subacute rehabilitation center in Los Angeles, CA. Longitudinal cohort study of patients at a skilled nursing facility was followed over the course of 21 days. At the time of discharge from the skilled nursing facility, the patients were either readmitted to the hospital for continued care or discharged to a community setting. A longitudinal study of the physical therapy, occupational therapy, and sensor-based data assessments was performed. A generalized linear mixed model was used to find associations between functional measures with sensor-based features. Occupational therapy and physical therapy assessments were performed at the time of admission and once a week during the skilled nursing facility admission. Results Of the 110 individuals in the analytic sample with mean age of 79.4 (SD 5.9) years, 79 (72%) were female and 31 (28%) were male participants. The energy intensity of an individual while in the therapy area was positively associated with transfer activities (β=.22; SE 0.08; P=.02). Sitting energy intensity showed positive association with transfer activities (β=.16; SE 0.07; P=.02). Lying down energy intensity was negatively associated with hygiene activities (β=–.27; SE 0.14; P=.04). The interaction of sitting energy intensity with time (β=–.13; SE 0.06; P=.04) was associated with toileting activities. Conclusions This study demonstrates that a combination of indoor localization and physical activity tracking produces a series of features, a subset of which can provide crucial information to the story line of daily and longitudinal activity patterns of patients receiving rehabilitation at a skilled nursing facility. The findings suggest that detecting physical activity changes within locations may offer some insight into better characterizing patients’ progress or decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.