The precise point positioning (PPP)-based real-time-kinematic (RTK) method attracts increasing attention from both academia and industry because of its potential for high accuracy positioning with a shorter convergence time compared to the traditional PPP. Besides high accuracy, integrity monitoring (IM) is indispensable for safety–critical real-time land vehicle and aviation applications. As the traditional advanced receiver autonomous integrity monitoring (ARAIM) method is designed for (smoothed) pseudorange-based positioning, the complexity of multi-frequency multi-constellation PPP-RTK using carrier phase measurements has not been given sufficient consideration. This study proposes an IM scheme for multi-frequency multi-constellation uncombined PPP-RTK applying the ARAIM theory, with a new comprehensive threat model to accommodate not only pseudorange measurements, but also carrier phase measurements, and other fault events arising from the network corrections that support PPP-RTK. Characteristics of different types of faults are analyzed with the aid of numerical experiments. In addition, the impact of ambiguity-fixed solutions on PPP-RTK integrity performance is investigated. The authors have also conducted case studies, including static and real-kinematic positioning experiments. Experiments have demonstrated that fast convergence in accuracy and the position error bounds, or protection levels, with a given integrity risk, in horizontal position components of PPP-RTK could be achieved. For the open sky environments on a highway, the protection levels estimated by PPP-RTK solutions have the potential to meet the alert limit requirement for road transportation using ambiguity-fixed PPP-RTK positioning under the assumption that the risks of wrong ambiguity fixing are very small and can be ignored.
Unrepaired cycle slips in carrier phase measurements will result in re-initializing integer ambiguities, during which positioning accuracy will be compromised. However, the issue of cycle slip fixing has yet to be completely solved, which impedes the realization of continuous high-precision positioning, especially in real-time precise point positioning applications. Traditional cycle slip (detection and) repair methods only use adjacent epochs to estimate cycle slips in real-time processing. Research indicates that using multiple epochs in the time-differencing model of cycle slip estimation could significantly improve cycle slip repair in real-time processing. A multi-epoch geometry-based cycle slip repair method is introduced, and it can also be implemented in real-time processing. A comparative study, including the theoretical model strength and real repairing rates for static and kinematic datasets, is performed under identical settings. The result demonstrates that a considerable number of the cycle slips unrepaired by the existing methods can be fixed by using the enhanced new method. In a low sampling rate static experiment, the average repair rates of the cycle slips unrepaired by the single-epoch geometry-based method and multi-epoch geometry-free method can be improved from 98.2% and 37.6% respectively to 99.3% by the new method using 4 epochs. In kinematic experiments, significant improvement is observed in shipborne, land-based, and airborne experiments using the new method compared with the existing methods.
Integrity monitoring for precise point positioning is critical for safety-related applications. With the increasing demands of high-accuracy autonomous navigation for unmanned ground and aerial vehicles, the integrity monitoring method of high-precision positioning has become an essential requirement. While high precision Global Navigation Satellite Systems (GNSS) positioning is widely used in such applications, there are still many difficulties in the integrity monitoring method for the multi-frequency multi-GNSS undifferenced and uncombined Precise Point Positioning (PPP). The main difficulties are caused by using the measurements of multiple epochs in PPP. Based on the baseline Multiple Hypothesis Solution Separation (MHSS) Advanced Receiver Autonomous Integrity Monitoring (ARAIM) algorithm, this paper discusses the feasibility of the pseudorange-based baseline ARAIM method on the single-epoch PPP based on Real-Time Kinematic (RTK) networks (PPP-RTK) framework to overcome these difficulties. In addition, a new scheme is proposed to transfer the conventional PPP process into the single-epoch PPP-RTK framework. The simulation results using the proposed model are analyzed in this study. The Protection Levels (PLs) estimated by PPP Wide-lane Ambiguity Resolution (PPP-WAR) model with regional corrections can reach the meter level and the PLs estimated by PPP Ambiguity Resolution (PPP-AR) and PPP-RTK models are usually the sub-meter level. Given a horizontal Alert Limit (AL) of 1.5 m, the global coverage of availability above 99.9% for PPP-WAR, PPP-AR, and PPP-RTK can reach 92.6%, 99.4%, and 99.7% respectively. The results using real kinematic data also show that tight PLs can be achieved when the observation conditions are good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.