Stimuli‐responsive shape‐transforming hydrogels have shown great potential toward various engineering applications including soft robotics and microfluidics. Despite significant progress in designing hydrogels with ever more sophisticated shape‐morphing behaviors, an ultimate goal yet to be fulfilled is programmable reversible shape transformation. It is reported here that transient structural anisotropy can be programmed into copolymer hydrogels of N‐isopropylacrylamide and stearyl acrylate. Structural anisotropy arises from the deformed hydrophobic domains of the stearyl groups after thermomechanical programming, which serves as a template for the reversible globule‐to‐coil transition of the poly(N‐isopropylacrylamide) chains. The structural anisotropy is transient and can be erased upon cooling. This allows repeated programming for reversible shape transformation, an unknown feature for the current hydrogels. The programmable reversible transformation is expected to greatly extend the technical scope for hydrogel‐based devices.
Stress-free two-way shape memory polymers (2W-SMPs) capable of reversible shifting between two distinct shapes are versatile platforms for the development of future smart devices. However, it is challenging to prepare stress-free 2W-SMPs with good actuation performance and shape programmability from single-component semicrystalline polymers. Herein, we demonstrate a straightforward and universal strategy for preparing 2W-SMPs through self-nucleated crystallization (SNC) of semicrystalline polymers. SNC enables the formation of two types of crystals in the 2W-SMPs, annealed and primary crystals, which function as the skeleton phase and actuation phase, respectively. We achieved a high reversible actuation strain of 17.6% and a good reprogrammability of the SNC-treated polymer networks. Complex shape transformations were obtained, and smart devices were fabricated from the SNC-treated networks by using a locally designed folding and kirigami structure. The SNC strategy provides a generalized approach to improve the 2W-shape memory behavior of semicrystalline polymers.
A Cu(ii)–pyridyl complex was in situ synthesized and immobilized onto silica microspheres as a highly effective Fenton-like catalyst at near-neutral pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.