COL is one of the few antibiotics effective against clinical isolates of GNB. However, in recent years, GNB resistance to colistin has been increasing.
Being among the few last-resort antibiotics, colistin (COL) has been used to treat severe infectious diseases, such as those caused by multidrugresistant Gram-negative bacteria (MDR GNB). However, the appearance of colistin-resistant (COL-R) GNB has been frequently reported. Therefore, novel antimicrobial strategies need to be urgently sought to address this resistance challenge. In the present study, antimicrobial drug screening conducted revealed that bithionol (BT), approved by the Food and Drug Administration and used as an anthelminthic drug for paragonimiasis, exhibited a synergistic antibacterial effect with COL. Clinically isolated COL-R GNB were used as candidates to evaluate the synergistic antibacterial activity. The results revealed that BT could significantly reverse the sensitivity of COL-R GNB to COL. Furthermore, the combined application of BT and COL can reduce bacterial biofilm formation and have a scavenging effect on the mature biofilm in vitro. The damage caused to the bacterial cell membrane integrity by the BT/COL combination was observed under a fluorescence microscope. The fluorescence intensity of reactive oxygen species also increased in the experimental group. The BT/COL combination also exhibited a synergistic antibacterial effect in vivo. Importantly, BT was confirmed to be safe at the highest concentrations that exerted synergistic effects on all tested strains. In conclusion, our findings demonstrated that BT exerted synergistic antimicrobial and anti-biofilm effects when combined with COL against MDR organisms, especially COL-R GNB, in vitro and in vivo. The findings thus provide a reference for the clinical response to the serious challenge of MDR GNB and the exploitation of the potential antibacterial activities of existing clinical non-antibacterial drugs.
Objectives To characterize a novel transposon Tn7533 carrying the tet(X2) gene in a tigecycline-resistant Acinetobacter pittii BM4623 of clinical origin. Methods Gene knockout and in vitro cloning were used to verify the function of tet(X2). WGS and comparative genomic analysis were used to explore the genetic characteristics and molecular evolution of tet(X2). Inverse PCR and electroporation experiments were used to evaluate the excision and integration capabilities of Tn7533. Results A. pittii BM4623 belonged to a novel ST, ST2232 (Pasteur scheme). Knockout of tet(X2) in BM4623 restored its susceptibility to tigecycline. Cloning of the tet(X2) gene into Escherichia coli DH5α and Acinetobacter baumannii ATCC 17978 resulted in 16-fold or more increases in MICs of tigecycline. Sequence analysis showed that the region upstream of tet(X2) exhibited a high degree of diversity, while there was a 145 bp conserved region downstream of tet(X2). tet(X2) in BM4623 was located on a novel composite transposon Tn7533, which also contains multiple resistance genes including blaOXA-58. Tn7533 could be excised from the chromosome to form a circular intermediate and transferred into A. baumannii ATCC 17978 by electroporation. Conclusions Our study demonstrates that tet(X2) is a determinant conferring clinical resistance to tigecycline in Acinetobacter species. The emergence of Tn7533 may lead to the potential dissemination of tigecycline and carbapenem resistance in Acinetobacter, which requires continuous monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.