Biofilms that contribute to the persistent bacterial infections pose serious threats to global public health, mainly due to their resistance to antibiotics penetration and escaping innate immune attacks by phagocytes. Here, we report a kind of surface-adaptive gold nanoparticles (AuNPs) exhibiting (1) a self-adaptive target to the acidic microenvironment of biofilm, (2) an enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus (MRSA) biofilm under near-infrared (NIR) light irradiation, and (3) no damage to the healthy tissues around the biofilm. Originally, AuNPs were readily prepared by surface modification with pH-responsive mixed charged zwitterionic self-assembled monolayers consisting of weak electrolytic 11-mercaptoundecanoic acid (HS-C-COOH) and strong electrolytic (10-mercaptodecyl)trimethylammonium bromide (HS-C-N). The mixed charged zwitterion-modified AuNPs showed fast pH-responsive transition from negative charge to positive charge, which enabled the AuNPs to disperse well in healthy tissues (pH ∼7.4), while quickly presenting strong adherence to negatively charged bacteria surfaces in MRSA biofilm (pH ∼5.5). Simultaneous AuNP aggregation within the MRSA biofilm enhanced the photothermal ablation of MRSA biofilm under NIR light irradiation. The surrounding healthy tissues showed no damage because the dispersed AuNPs had no photothermal effect under NIR light. In view of the above advantages as well as the straightforward preparation, AuNPs developed in this work may find potential applications as a useful antibacterial agent in the areas of healthcare.
Mussel-inspired polydopamine (PDA) deposition offers a promising route to fabricate multifunctional coatings for various materials. However, PDA deposition is generally a time-consuming process, and PDA coatings are unstable in acidic and alkaline media, as well as in polar organic solvents. We report a strategy to realize the rapid deposition of PDA by using CuSO4/H2O2 as a trigger. Compared to the conventional processes, our strategy shows the fastest deposition rate reported to date, and the PDA coatings exhibit high uniformity and enhanced stability. Furthermore, the PDA-coated porous membranes have excellent hydrophilicity, anti-oxidant properties, and antibacterial performance. This work demonstrates a useful method for the environmentally friendly, cost-effective, and time-saving fabrication of PDA coatings.
Mussel-inspired polydopamine (PDA) deposition offers ap romising route to fabricate multifunctional coatings for various materials.H owever,P DA deposition is generally at ime-consuming process,a nd PDAc oatings are unstable in acidic and alkaline media, as well as in polar organic solvents. We report astrategy to realize the rapid deposition of PDAby using CuSO 4 /H 2 O 2 as atrigger.Compared to the conventional processes,o ur strategy shows the fastest deposition rate reported to date,and the PDAcoatings exhibit high uniformity and enhanced stability.F urthermore,t he PDA-coated porous membranes have excellent hydrophilicity,anti-oxidant properties,a nd antibacterial performance.T his work demonstrates auseful method for the environmentally friendly,cost-effective, and time-saving fabrication of PDAc oatings.
Very thin polydopamine (PDA) coating with 20–30 nanometer thickness is prepared through self‐polymerization of dopamine. This PDA nanocoating can generate high local heat upon near‐infrared (NIR) irradiation in minutes, leading to the efficient killing of both Gram negative and positive bacteria, and fungus as well.
IntroductionThe primary aim of this study was to determine whether hypophosphatemia during continuous veno-venous hemofiltration (CVVH) is associated with the global outcome of critically ill patients with acute kidney injury (AKI).Methods760 patients diagnosed with AKI and had received CVVH therapy were retrospectively recruited. Death during the 28-day period and survival at 28 days after initiation of CVVH were used as endpoints. Demographic and clinical data including serum phosphorus levels were recorded along with clinical outcome. Hypophosphatemia was defined according to the colorimetric method as serum phosphorus levels < 0.81 mmol/L (2.5 mg/dL), and severe hypophosphatemia was defined as serum phosphorus levels < 0.32 mmol/L (1 mg/dL). The ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was calculated to reflect the persistence of hypophosphatemia.ResultsThe Cox proportional hazard survival model analysis indicated that the incidence of hypophosphatemia or even severe hypophosphatemia was not associated with 28-day mortality independently (p = 0.700). Further analysis with the sub-cohort of patients who had developed hypophosphatemia during the CVVH therapy period indicated that the mean ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was 0.58, and the ratio independently associated with the global outcome. Compared with the patients with low ratio (< 0.58), those with high ratio (≥ 0.58) conferred a 1.451-fold increase in 28-day mortality rate (95% CI 1.103–1.910, p = 0.008).ConclusionsHypophosphatemia during CVVH associated with the global clinical outcome of critically ill patients with AKI. The ratio of CVVH therapy days with hypophosphatemia over total CVVH therapy days was independently associated with the 28-day mortality, and high ratio conferred higher mortality rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.