Heinong 84 is one of the major soybean varieties growing in Northeast China, and is resistant to the infection of all strains of soybean mosaic virus (SMV) in the region including the most prevalent strain, N3. However, the resistance gene(s) in Heinong 84 and the resistant mechanism are still elusive. In this study, genetic and next-generation sequencing (NGS)-based bulk segregation analysis (BSA) were performed to map the resistance gene using a segregation population from the cross of Heinong 84 and a susceptible cultivar to strain N3, Zhonghuang 13. Results show that the resistance of Heinong 84 is controlled by a dominant gene on chromosome 13. Further analyses suggest that the resistance gene in Heinong 84 is probably an allele of Rsv1. Finally, two pairs of single-nucleotide-polymorphism (SNP)-based primers that are tightly cosegregated with the resistance gene were designed for rapidly identifying resistant progenies in breeding via the cleaved amplified polymorphic sequence (CAPS) assay.
Positive-sense single-stranded RNA viruses replicate in virus-induced membranous organelles for maximum efficiency and immune escaping. The replication of potato virus X (PVX) takes place on the endoplasmic reticulum (ER); however, how PVX-encoded RNA-dependent RNA polymerase (RdRp) is associated with the ER is still unknown. A proline-kinked amphipathic α-helix was recently found in the MET domain of RdRp. In this study, we further illustrate that the first α-helix of the MET domain is also required for ER association. Moreover, we found that the MET domain forms multimers on ER and the first α-helix is essential for multimerization. These results suggest that the RdRp of PVX adopts more than one hydrophobic motif for membrane association and for multimerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.