Targeting "oncogene addiction" is a promising strategy for anticancer therapy. We report a potent inhibition of crucial oncogenes by p53 upon reactivation by small-molecule RITA in vitro and in vivo. RITA-activated p53 unleashes the transcriptional repression of antiapoptotic proteins Mcl-1, Bcl-2, MAP4, and survivin; blocks the Akt pathway on several levels; and downregulates c-Myc, cyclin E, and beta-catenin. p53 ablates c-Myc expression via several mechanisms at the transcriptional and posttranscriptional level. We show that the threshold for p53-mediated transrepression of survival genes is higher than for transactivation of proapoptotic targets. Inhibition of oncogenes by p53 reduces the cell's ability to buffer proapoptotic signals and elicits robust apoptosis. Our study highlights the role of transcriptional repression for p53-mediated tumor suppression.
We have previously identified the p53-reactivating compound RITA in a cell-based screen. Here, using microarray analysis, we show that the global transcriptional response of tumor cells to RITA is p53 dependent. Pathway analysis revealed induction of the p53 apoptosis pathway, consistent with apoptosis being the major response to RITA in cancer cells. We uncovered that MDM2 released from p53 by RITA promotes degradation of p21 and the p53 cofactor hnRNP K, required for p21 transcription. Functional studies revealed MDM2-dependent inhibition of p21 as a key switch regulating cell fate decisions upon p53 reactivation. Our results emphasize the utility of targeting wild-type p53 protein itself as a promising approach for anticancer therapy.
Expression of mutant p53 correlates with poor prognosis in many tumors, therefore strategies aimed at reactivation of mutant p53 are likely to provide important benefits for treatment of tumors that are resistant to chemotherapy and radiotherapy. We have previously identified and characterized a small molecule RITA which binds p53 and induces a conformational change which prevents the binding of p53 to several inhibitors, including its own destructor MDM2. In this way, RITA rescues the tumor suppression function of wild type p53. Here, we demonstrate that RITA suppressed the growth and induced apoptosis in human tumor cell lines of a diverse origin carrying mutant p53 proteins. RITA restored transcriptional transactivation and transrepression function of several hot spot p53 mutants. The ability of RITA to rescue the activity of different p53 mutants suggests its generic mechanism of action. Thus, RITA is a promising lead for the development of anti-cancer drugs that reactivate the tumor suppressor function of p53 in cancer cells irrespective whether they express mutant or wild type p53.
In higher plants, male reproductive development is a complex biological process that includes cell division and differentiation, cell to cell communication etc., while the mechanism underlying plant male reproductive development remains less understood. GAMYB encodes a gibberellins acid (GA) inducible transcription factor that is required for the early anther development in rice (Oryza sativa L.). Here, we report the isolation and characterization of a new allele gamyb-4 with a C base deletion in the second exon (+2308), causing a frame shift and premature translational termination. Histological analysis showed that gamyb-4 developed abnormal enlarged tapetum and could not undergo normal meiosis. To understand the regulatory role of GAMYB, we carried out quantitative reverse transcription-polymerase chain reaction analysis and comparison of microarray data. These results revealed that the expression of TDR (TAPETUM DEGENERATION RETARDATION), a tapetal cell death regulator, was downregulated in gamyb-4 and udt1 (undeveloped tapetum1). While the GAMYB expression was not obviously changed in tdr and udt1-1, and no apparent expression fold change of UDT1 in tdr and gamyb-4, suggesting that TDR may act downstream of GAMYB and UDT1, and GAMYB and UDT1 work in parallel to regulate rice early anther development. This work is helpful in understanding the regulatory network in rice anther development.
Proteasomal degradation of p53 by human papilloma virus (HPV) E6 oncoprotein plays a pivotal role in the survival of cervical carcinoma cells. Abrogation of HPV-E6-dependent p53 destruction can therefore be a good strategy to combat cervical carcinomas. Here, we show that a small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) is able to induce the accumulation of p53 and rescue its tumor suppressor function in cells containing high-risk HPV16 and HPV18 by inhibiting HPV-E6-mediated proteasomal degradation. RITA blocks p53 ubiquitination by preventing p53 interaction with E6-associated protein, required for HPV-E6-mediated degradation. RITA activates the transcription of proapoptotic p53 targets Noxa, PUMA, and BAX, and repressed the expression of pro-proliferative factors CyclinB1, CDC2, and CDC25C, resulting in p53-dependent apoptosis and cell cycle arrest. Importantly, RITA showed substantial suppression of cervical carcinoma xenografts in vivo. These results provide a proof of principle for the treatment of cervical cancer in a p53-dependent manner by using small molecules that target p53. Cancer Res; 70(8); 3372-81. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.