Multichannel communication is an important means to improve the reliability of low-power Internet-of-Things (IoT) networks. Typically, data transmissions in IoT networks are often required to be delivered before a given deadline, making deadline-driven channel allocation an essential task. The existing works on time-division multiple access often fail to establish channel schedules to meet the deadline requirement, as they often assume that transmissions can be successful within one transmission slot. Besides, the allocation and link estimation incur considerable overhead for the IoT nodes. In this article, we propose an edge-based channel allocation (ECA) for unreliable IoT networks. In ECA, we explicitly consider the impact of allocation sequences and employ a recurrent-neural-networkbased channel estimation scheme. We utilize link quality and retransmission opportunities to maximize the packet delivery ratio before deadline. The allocation algorithms are executed on edge servers such that: 1) the channel allocation can be updated more frequently to deal with the wireless dynamics; 2) the allocation results can be obtained in real time; and 3) channel estimation can be more accurate. Extensive evaluation results show that ECA can significantly improve the reliability of deadline-driven IoT networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.