IbZFP1, encoding a Cys 2/His 2 zinc finger protein gene from sweetpotato, enhances salt and drought tolerance in transgenic Arabidopsis by regulating ABA signaling pathway, proline biosynthesis, stress responses and ROS scavenging. In plants, Cys2/His2 zinc finger proteins play important roles in regulating the growth and development or responses to abiotic stresses. In this study, a novel Cys2/His2 zinc finger protein gene, named IbZFP1, was isolated from drought-tolerant sweetpotato [Ipomoea batatas (L.) Lam.] line Xu55-2. Subcellular localization analysis in onion epidermal cells indicated that IbZFP1 was localized to the nucleus. Expression analysis in yeast showed that the full length of IbZFP1 exhibited transcriptional activation. Expression of IbZFP1 was induced by NaCl, polyethylene glycol and abscisic acid (ABA). Overexpression of IbZFP1 significantly enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of IbZFP1 up-regulated the genes involved in ABA signaling pathway, proline biosynthesis, stress responses, and ROS scavenging under salt and drought stresses. Meanwhile, Western blot and enzymatic analyses showed that the activities of 9-cis-epoxycarotenoid dioxygenase, pyrroline-5-carboxylate synthase, superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase were also increased. Further component analyses indicated that the significant increase of ABA, proline, soluble sugar and total chlorophyll content and the significant reduction of H2O2 and malonaldehyde content were observed under salt and drought stresses. In addition, the rates of electrolyte leakage and water loss were reduced in transgenic plants. The overall results demonstrate the explicit role of IbZFP1 in conferring salt and drought tolerance in transgenic Arabidopsis plants. The IbZFP1 gene has the potential to be used to enhance the tolerance to abiotic stresses in plants.
Root-knot nematode disease is a widespread and catastrophic disease of tobacco. However, little is known about the relationship between rhizosphere bacterial community and root-knot nematode disease. This study used 16S rRNA gene sequencing and PICRUSt to assess bacterial community structure and function changes in rhizosphere soil from <i>Meloidogyne incognita</i>-infected tobacco plants. We studied the rhizosphere bacterial community structure of <i>M. incognita</i>-infected and uninfected tobacco plants through a paired comparison design in two regions of tobacco planting area, Yuxi and Jiuxiang of Yunnan Province, southwest China. According to the findings, <i>M. incognita</i> infection can alter the bacterial population in the soil. Uninfested soil has more operational taxonomic unit numbers and richness than infested soil. Principal Coordinate Analysis revealed clear separations between bacterial communities from infested and uninfested soil, indicating that different infection conditions resulted in significantly different bacterial community structures in soils. Firmicutes was prevalent in infested soil, but Chloroflexi and Acidobacteria were prevalent in uninfested soil. <i>Sphingomonas</i>, <i>Streptomyces</i>, and <i>Bradyrhizobium</i> were the dominant bacteria genera, and their abundance were higher in infested soil. By PICRUSt analysis, some metabolism-related functions and signal transduction functions of the rhizosphere bacterial community in the <i>M. incognita</i> infection-tobacco plants had a higher relative abundance than those uninfected. As a result, rhizosphere soils from tobacco plants infected with <i>M. incognita</i> showed considerable bacterial community structure and function alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.