Given a query photo issued by a user (q-user), the landmark retrieval is to return a set of photos with their landmarks similar to those of the query, while the existing studies on the landmark retrieval focus on exploiting geometries of landmarks for similarity matches between candidate photos and a query photo. We observe that the same landmarks provided by different users over social media community may convey different geometry information depending on the viewpoints and/or angles, and may subsequently yield very different results. In fact, dealing with the landmarks with low quality shapes caused by the photography of q-users is often nontrivial and has seldom been studied. In this paper we propose a novel framework, namely multi-query expansions, to retrieve semantically robust landmarks by two steps. Firstly, we identify the top-k photos regarding the latent topics of a query landmark to construct multi-query set so as to remedy its possible low quality shape . For this purpose, we significantly extend the techniques of Latent Dirichlet Allocation. Then, motivated by the typical collaborative filtering methods, we propose to learn a collaborative deep networks based semantically, nonlinear and high-level features over the latent factor for landmark photo as the training set, which is formed by matrix factorization over collaborative user-photo matrix regarding the multi-query set. The learned deep network is further applied to generate the features for all the other photos, meanwhile resulting into a compact multiquery set within such space. Then, the final ranking scores are calculated over the high-level feature space between the multi-query set and all other photos, which are ranked to serve as the final ranking list of landmark retrieval. Extensive experiments are conducted on real-world social media data with both landmark photos together with their user information to show the superior performance over the existing methods, especially our recently proposed multi-query based mid-level pattern representation method [Wang et al., 2015a].
Abstract-Uncertain data is inherent in various important applications and reverse nearest neighbor (RNN) query is an important query type for many applications. While many different types of queries have been studied on uncertain data, there is no previous work on answering RNN queries on uncertain data. In this paper, we formalize probabilistic reverse nearest neighbor query that is to retrieve the objects from the uncertain data that have higher probability than a given threshold to be the RNN of an uncertain query object. We develop an efficient algorithm based on various novel pruning approaches that solves the probabilistic RNN queries on multidimensional uncertain data. The experimental results demonstrate that our algorithm is even more efficient than a sampling-based approximate algorithm for most of the cases and is highly scalable.
Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.