Abnormal lipid-mediated hepatic inflammatory-immune dysfunction and chronic low grade inflammation play an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Macrophage polarization is an important mechanism for the regulation of inflammatory response. Since PPAR-γ has emerged as a master regulator of macrophage polarization, we aimed to investigate the lipid-induced macrophage/Kupffer cell polarization in vivo and in vitro, and explore the association between PPAR-γ activity and macrophages M1/M2 polarization shifting. Here we showed that long-term high-fat diet increased Kupffer cells content with M1-predominant phenotype and increasing production of pro-inflammatory cytokines. Saturated fatty acids polarized Kupffer cells/macrophages to an M1-predominant phenotype while n-3 PUFA polarized Kupffer cells/macrophages to an M2 phenotype, which was associated with activation of NF-κB signal pathway and PPAR-γ respectively. Furthermore, up-regulation of PPAR-γ shifted lipid-induced macrophages polarization from M1-predominant phenotype to M2 phenotype. Macrophages polarization switch was associated with the interaction between PPAR-γ and NF-κBp65 signal pathway. Rosiglitazone restored high-fat diet-induced imblance of Kupffer cells M1/M2 polarization and alleviated hepatic steatosis as well as local pro-inflammatory response. These findings suggest that manipulation of PPAR-γ activity has the potential to balance lipid-induced M1/M2 macrophage/Kupffer cell polarization, and leading to prevent the development of NAFLD.
BackgroundThe main olfactory epithelium (MOE) in mammals is a specialized organ to detect odorous molecules in the external environment. The MOE consists of four types of cells: olfactory sensory neurons, supporting cells, basal cells, and microvillous cells. Among these, development and function of microvillous cells remain largely unknown. Recent studies have shown that a population of microvillous cells expresses the monovalent cation channel Trpm5 (transient receptor potential channel M5). To examine functional differentiation of Trpm5-expressing microvillous cells in the MOE, we investigated the expression and function of Skn-1a, a POU (Pit-Oct-Unc) transcription factor required for functional differentiation of Trpm5-expressing sweet, umami, and bitter taste bud cells in oropharyngeal epithelium and solitary chemosensory cells in nasal respiratory epithelium.ResultsSkn-1a is expressed in a subset of basal cells and apical non-neuronal cells in the MOE of embryonic and adult mice. Two-color in situ hybridization revealed that a small population of Skn-1a-expressing cells was co-labeled with Mash1/Ascl1 and that most Skn-1a-expressing cells coexpress Trpm5. To investigate whether Skn-1a has an irreplaceable role in the MOE, we analyzed Skn-1a-deficient mice. In the absence of Skn-1a, olfactory sensory neurons differentiate normally except for a limited defect in terminal differentiation in ectoturbinate 2 of some of MOEs examined. In contrast, the impact of Skn-1a deficiency on Trpm5-expressing microvillous cells is much more striking: Trpm5, villin, and choline acetyltransferase, cell markers previously shown to identify Trpm5-expressing microvillous cells, were no longer detectable in Skn-1a-deficient mice. In addition, quantitative analysis demonstrated that the density of superficial microvillous cells was significantly decreased in Skn-1a-deficient mice.ConclusionSkn-1a is expressed in a minority of Mash1-positive olfactory progenitor cells and a majority of Trpm5-expressing microvillous cells in the main olfactory epithelium. Loss-of-function mutation of Skn-1a resulted in complete loss of Trpm5-expressing microvillous cells, whereas most of olfactory sensory neurons differentiated normally. Thus, Skn-1a is a critical regulator for the generation of Trpm5-expressing microvillous cells in the main olfactory epithelium in mice.
IMPORTANCE Previous studies have suggested that patients with cancer may be at an increased risk of death from unintentional injury, but to our knowledge, no large studies have examined the rates of death from unintentional injury among patients with cancer. OBJECTIVE To characterize the incidence of death from unintentional injury among patients with cancer in the United States. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included patients diagnosed with a first primary cancer between January 1, 1973, and December 31, 2015, identified from the Surveillance, Epidemiology, and End Results (SEER) program data. Comparisons with the general US population were based on mortality data collected by the National Center for Health Statistics. Analyses were performed from February 1, 2019, to August 15, 2019. MAIN OUTCOMES AND MEASURES Rates and standardized mortality ratios (SMRs) of death from unintentional injury among patients with cancer. RESULTS A total of 8 271 020 patients with cancer were included in this study (50.2% female; mean [SD] age, 63.0 [15.7] years). Among them, 40 599 deaths from unintentional injury were identified. The rates of death from unintentional injury were 81.90 per 100 000 person-years among patients with cancer and 51.21 per 100 000 person-years in the corresponding US general population. The
This meta-analysis suggests that individuals with DM have a significant increase in risk of developing CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.