Rapid, convenient methods for monoclonal antibody (mAb) isolation are critical for determining the concentrations of therapeutic mAbs in human serum. This work uses porous nylon membranes modified with a HER2 peptide mimotope, KGSGSGSQLGPYELWELSH (KH19), for rapid affinity capture of Herceptin, a mAb used to treat breast cancer. Covalent linking of KH19 to poly(acrylic acid)-containing films in porous nylon leads to a Herceptin-binding capacity of 10 mg per mL of membrane and allows selective Herceptin capture from diluted (1:3) human serum in 5 min. Liquid chromatography-mass spectrometry demonstrates the high purity of eluted Herceptin. Moreover, the fluorescence intensity of the protein eluted from membranes increases linearly with the amount of Herceptin spiked in loading solutions containing diluted (1:3) human serum. These results demonstrate the promise of mimotope-modified membranes for Herceptin analysis that does not require secondary antibodies or derivatization with fluorescent labels. Thus, mimotope-containing membranes may form part of a simple benchtop analysis system for assessing the concentrations of therapeutic mAbs.
Membrane adsorbers rapidly capture tagged proteins because flow through membrane pores efficiently conveys proteins to binding sites. Effective adsorbers, however, require membrane pores coated with thin films that bind multilayers of proteins. This work employs adsorption of polyelectrolytes that chelate metal ions to create functionalized membranes that selectively capture polyhistidine-tagged (His-tagged) proteins with binding capacities equal to those of high-binding commercial beads. Adsorption of functional polyelectrolytes is simpler than previous membrane-modification strategies such as growth of polymer brushes or derivatization of adsorbed layers with chelating moieties. Sequential adsorption of protonated poly(allylamine) (PAH) and carboxymethylated branched polyethylenimine (CMPEI) leads to membranes that bind Ni(2+) and capture ∼60 mg of His-tagged ubiquitin per mL of membrane. Moreover, these membranes enable isolation of His-tagged protein from cell lysates in <15 min. The backbone amine groups in CMPEI likely increase swelling in water to double protein binding compared to films composed of PAH and the chelating polymer poly[(N,N-dicarboxymethyl)allylamine] (PDCMAA), which has a hydrocarbon backbone. Metal leaching from PAH/CMPEI- and PAH/PDCMAA-modified membranes is similar to that from GE Hitrap FF columns. Eluates with 0.5 M imidazole contain <10 ppm of Ni(2+).
Proteolysis is often a critical step in protein characterization via mass spectrometry. Compared to complete digestion, limited proteolysis gives larger peptides, and the dominant cleavage sites may identify highly accessible, flexible protein regions. This paper explores controlled proteolysis in porous nylon membranes containing immobilized trypsin. Passage of protein solutions through ∼100 μm thick membranes provides reaction residence times as short as milliseconds to limit digestion. Additionally, variation of the membrane pore size and the protease-immobilization method (electrostatic adsorption or covalent anchoring to adsorbed polymer in membrane pores) affords control over the proteolysis rate. When digesting the highly labile protein β-casein, large membrane pores (5.0 μm) and covalent enzyme anchoring to adsorbed polymer lead to particularly long tryptic peptides. With the more trypsin-resistant proteins cytochrome c and apomyoglobin, in-membrane proteolysis with short residence times, 1.2 μm membrane pores, and trypsin electrostatically immobilized to an adsorbed polyanion cleaves the proteins after lysine residues in flexible regions. For both cytochrome c and apomyoglobin, cleavages in an interhelix region yield two particularly large peptides that cover the entire protein sequence.
This paper describes a convenient synthesis of nitrilotriacetate (NTA)-containing polymers and subsequent layer-by-layer adsorption of these polymers on flat surfaces and in membrane pores. The resulting films form NTA-metal-ion complexes and capture 2-3 mmol of metal ions per mL of film. Moreover, these coatings bind multilayers of polyhistidine-tagged proteins through association with NTA-metal-ion complexes. Inclusion of acrylic acid repeat units in NTA-containing copolymers promotes swelling to increase protein binding in films on Au-coated wafers. Adsorption of NTA-containing films in porous nylon membranes gives materials that capture ∼46 mg of His-tagged ubiquitin per mL. However, the binding capacity decreases with the protein molecular weight. Due to the high affinity of NTA for metal ions, the modified membranes show modest leaching of Ni(2+) in binding and rinsing buffers. Adsorption of NTA-containing polymers is a simple method to create metal- and protein-binding films and may, with future enhancement of stability, facilitate development of disposable membranes that rapidly purify tagged proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.