Functional magnetic resonance imaging (fMRI) has been increasingly utilized in mice. Due to the non-negligible effects of anesthetics on mouse fMRI, it is becoming more common to perform fMRI in the awake mice. However, high stress level and head motion in awake mouse fMRI remain to be fully addressed, which limits its practical applications. Therefore, here we presented a systematically optimized awake mouse fMRI paradigm as a practical and open-source solution. First, we designed a soundproof habituation chamber in which multiple mice can be habituated simultaneously and independently. Then, combining corticosterone, body weight and behavioral measurements, we systematically evaluated the potential factors that may contribute to animals' stress level for awake imaging. Among many factors, we found that the restraining setup allowing forelimbs freely moving and head tilted at 30-degree was optimal for minimizing stress level. Importantly, we implemented multiband simultaneous multi-slice imaging to enable ultrafast fMRI acquisition in awake mice. Compared to conventional single-band EPI, faster acquisition enabled by multiband imaging were more robust to head motion and yielded higher statistical power. Thus, more robust resting-state functional connectivity was detected using multiband acquisition in awake mouse fMRI, compared to conventional single-band acquisition. In conclusion, we presented an awake mouse fMRI paradigm that is highly optimized in both awake mice habituation and fMRI acquisition, and such paradigm minimized animals' stress level and provided more resistance to head motion and higher statistical power. Keywords: awake mice, fMRI, stress level, head motion, simultaneous multi-slice.
The genetic etiology and underlying mechanism of autism spectrum disorder (ASD) remain elusive. SHANK family genes (SHANK1/2/3) are well known ASD-related genes. However, little is known about how SHANK missense mutations contribute to ASD. Here, we aimed to clarify the molecular mechanism of and the multilevel neuropathological features induced by Shank1 mutations in knock-in (KI) mice. In this study, by sequencing the SHANK1 gene in a cohort of 615 ASD patients and 503 controls, we identified an ASD-specific recurrent missense mutation, c.2621 G > A (p.R874H). This mutation demonstrated strong pathogenic potential in in vitro experiments, and we generated the corresponding Shank1 R882H-KI mice. Shank1 R882H-KI mice displayed core symptoms of ASD, namely, social disability and repetitive behaviors, without confounding comorbidities of abnormal motor function and heightened anxiety. Brain structural changes in the frontal cortex, hippocampus and cerebellar cortex were observed in Shank1 R882H-KI mice via structural magnetic resonance imaging. These key brain regions also showed severe and consistent downregulation of mGluR1-IP3R1-calcium signaling, which subsequently affected the release of intracellular calcium. Corresponding cellular structural and functional changes were present in Shank1 R882H-KI mice, including decreased spine size, reduced spine density, abnormal morphology of postsynaptic densities, and impaired hippocampal long-term potentiation and basal excitatory transmission. These findings demonstrate the causative role of SHANK1 in ASD and elucidate the underlying biological mechanism of core symptoms of ASD. We also provide a reliable model of ASD with core symptoms for future studies, such as biomarker identification and therapeutic intervention studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.