On-site monitoring the plantation of genetically modified (GM) crops is of critical importance in agriculture industry throughout the world. In this paper, a simple, visual and instrument-free method for instant on-site detection of GTS 40-3-2 soybean has been developed. It is based on body-heat recombinase polymerase amplification (RPA) and followed with naked-eye detection via fluorescent DNA dye. Combining with extremely simplified sample preparation, the whole detection process can be accomplished within 10 min and the fluorescent results can be photographed by an accompanied smart phone. Results demonstrated a 100% detection rate for screening of practical GTS 40-3-2 soybean samples by 20 volunteers under different ambient temperatures. This method is not only suitable for on-site detection of GM crops but also demonstrates great potential to be applied in other fields.
Respiratory syncytial virus (RSV) is a leading viral pathogen responsible for lower respiratory tract infections, particularly in children under five years worldwide, often resulting in hospitalization.
Nicking enzyme assisted amplification (NEAA) is an extremely rapid method for molecular diagnosis. However, this technology is not widely applied for real sample analysis because the overproduced non-specific products limit its sensitivity and raise the threshold of detection methods. Here, we have found that the non-specific amplification is mainly caused by the coexistence of Bst polymerase, nicking primers and dNTP. The highly active nicking enzyme directs and accelerates the non-specific amplification in a way which favors nicking. To suppress the non-specific amplification, the nicking enzyme concentration, reaction temperature, and magnesium ion concentration are optimized. The compatibility of Bst polymerase with the concentration of the monovalent cation is also crucial. Besides, the sensitivity could be enhanced by shortening the target sequences and priming the 3' end of the target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.