This paper uses weekly data from July 01, 2011 to July 09, 2021 to examine the dynamic nonlinear connectedness between the green bonds, clean energy, and stock price around the COVID-19 outbreak in the global markets. By building a time-varying parameter vector autoregression model (TVP-VAR), the comparison analyses of pre- and during the COVID-19 sample groups verify the existence of nonlinear and dynamic correlation among the three variables. First, prior to the COVID-19 pandemic, the simultaneous impacts of clean energy on stock price increased over time. Second, the results of impulse responses at different horizons indicate that green bonds lead to a short-term increase of clean energy, and it exerts an increasingly positive impacts after the COVID-19 outbreak. The COVID-19 has weakened the negative impacts of green bonds on stock price in the medium term. Finally, through the analysis of impulse responses at different points, we find that stock prices will rise when clean energy is subjected to a positive shock, and this positive effect is stronger during economic recovery period than in the other two periods.
The impact of China’s green finance policies on renewable energy, clean energy, and other green companies is a hot topic of concern. This study uses the difference-in-differences (DID) model to examine the incentive effect of the Green Credit Guidelines (GCG) on the technological innovation and financial performance of Chinese listed green enterprises. The heterogeneity analysis is carried out from the level of digital finance, green development, and marketization. This study finds that: (1) Green finance is conducive to stimulating the technological innovation and financial performance of green enterprises. (2) Green enterprises in areas with high digital finance levels have a more significant incentive effect on green finance policies, compared to areas with less-developed digital finance. (3) Green enterprises in areas with high levels of green development are more significantly positively affected by green finance policies, compared to areas with less-developed digital finance. (4) The incentive effect of green credit policies on green enterprises in areas with a high degree of marketization is more significant, compared with regions with a lower level of green development. Finally, some policy implications are proposed to provide a reference for China to improve the green financial system to facilitate the financing of green enterprises.
To satisfy the demand of low-carbon transportation, this paper studies the optimization of public transit network based on the concept of low carbon. Taking travel time, operation cost, energy consumption, pollutant emission, and traffic efficiency as the optimization objectives, a bilevel model is proposed in order to maximize the benefits of both travelers and operators and minimize the environmental cost. Then the model is solved with the differential evolution (DE) algorithm and applied to a real network of Baoji city. The results show that the model can not only ensure the benefits of travelers and operators, but can also reduce pollutant emission and energy consumption caused by the operations of buses, which reflects the concept of low carbon.
Dwell time estimation plays an important role in the operation of urban rail system. On this specific problem, a range of models based on either polynomial regression or microsimulation have been proposed. However, the generalization performance of polynomial regression models is limited and the accuracy of existing microsimulation models is unstable. In this paper, a new dwell time estimation model based on extreme learning machine (ELM) is proposed. The underlying factors that may affect urban rail dwell time are analyzed first. Then, the relationships among different factors are extracted and modeled by ELM neural networks, on basis of which an overall estimation model is proposed. At last, a set of observed data from Beijing subway is used to illustrate the proposed method and verify its overall performance.
In urban rail transport, train timetable plays a crucial role, whose quality determines the whole system's performance to a large extent. In practical urban rail operation, two contradictive aspects-service quality and operation cost-should be considered during train scheduling. A good train timetable should achieve considerable service quality with as little operation cost as possible. Previously, many studies have been conducted specific to urban rail train scheduling, although most of them do not put enough emphasis on its multi-objective nature. In this article, therefore, Pareto optimal urban rail train scheduling which can give more instruction to practical operation is studied. First, referring to some existing studies, the problem is reasonably defined, which takes time-dependent origin-destination demand as the input and aims at minimizing the passengers' total travel time and the number of used train stocks. Then, an efficient iteration algorithm and a valid train stock assignment procedure are designed to calculate the passengers' total travel time and required train stock number, respectively. On that basis, the studied problem is reasonably formulated as a bi-objective optimization model and a Pareto-based particle swarm optimization procedure is designed to solve it. Finally, with two different scaled urban rail lines, the whole methodology is illustrated and the algorithm is tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.