Indoor room optimal allocation is of great importance in geographic information science (GIS) applications because it can generate effective indoor spatial patterns that improve human behavior and efficiency. However, few research concerning indoor room optimal allocation has been reported. Using an office building as an example, this paper presents an integrative approach for indoor room optimal allocation, which includes an indoor room allocation optimization model, indoor connective map design, and a multiple ant colony optimization (MACO) algorithm. The mathematical optimization model is a minimized model that integrates three types of area-weighted costs while considering the minimal requirements of each department to be allocated. The indoor connective map, which is an essential data input, is abstracted by all floor plan space partitions and connectivity between every two adjacent floors. A MACO algorithm coupled with three strategies, namely, (1) heuristic information, (2) two-colony rules, and (3) local search, is effective in achieving a feasible solution of satisfactory quality within a reasonable computation time. A case study was conducted to validate the proposed approach. The results show that the MACO algorithm with these three strategies outperforms other types of ant colony optimization (ACO), Genetic Algorithm (GA), and particle swarm optimization (PSO) algorithms in quality and stability, which demonstrates that the proposed approach is an effective technique for generating optimal indoor room spatial patterns.
The paper focuses on the problem of traffic congestion at intersection based on the mechanism of risk identification. The main goal of this study is to explore a new methodology for identifying and predicting the intersection congestion. Considering all the factors influencing the traffic status of intersection congestion, an integrated evaluation index system is constructed. Then, a detailed dynamic decision model is proposed for identifying the risk degree of the traffic congestion and predicting its influence on future traffic flow, which combines the traffic flow intrinsic properties with the basic model of the Risking Dynamic Multi-Attribute Decision-Making theory. A case study based on a real-world road network in Baoji, China, is implemented to test the efficiency and applicability of the proposed modeling. The evaluation result is in accord with the actual condition and shows that the approach proposed can determine the likelihood and risk degree of the traffic congestion occurring in the intersection, which can be used as a tool to help transport managers make some traffic control measures in advance.
To satisfy the demand of low-carbon transportation, this paper studies the optimization of public transit network based on the concept of low carbon. Taking travel time, operation cost, energy consumption, pollutant emission, and traffic efficiency as the optimization objectives, a bilevel model is proposed in order to maximize the benefits of both travelers and operators and minimize the environmental cost. Then the model is solved with the differential evolution (DE) algorithm and applied to a real network of Baoji city. The results show that the model can not only ensure the benefits of travelers and operators, but can also reduce pollutant emission and energy consumption caused by the operations of buses, which reflects the concept of low carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.