Regular environmental light–dark (LD) cycle-regulated period circadian clock 2 (Per2) gene expression is essential for circadian oscillation, nutrient metabolism, and intestinal microbiota balance. Herein, we combined environmental LD cycles with Per2 gene knockout to investigate how LD cycles mediate Per2 expression to regulate colonic and cecal inflammatory and barrier functions, microbiome, and short-chain fatty acids (SCFAs) in the circulation. Mice were divided into knockout (KO) and wild type (CON) under normal light–dark cycle (NLD) and short-light (SL) cycle for 2 weeks after 4 weeks of adaptation. The concentrations of SCFAs in the serum and large intestine, the colonic and cecal epithelial circadian rhythm, SCFAs transporter, inflammatory and barrier-related genes, and Illumina 16S rRNA sequencing were measured after euthanasia during 10:00–12:00. KO decreased the feeding frequency at 0:00–2:00 but increased at 12:00–14:00 both under NLD and SL. KO upregulated the expression of Per1 and Rev-erbα in the colon and cecum, while it downregulated Clock and Bmal1. In terms of inflammatory and barrier functions, KO increased the expression of Tnf-α, Tlr2, and Nf-κb p65 in the colon and cecum, while it decreased Claudin and Occludin-1. KO decreased the concentrations of total SCFAs and acetate in the colon and cecum, but it increased butyrate, while it had no impact on SCFAs in the serum. KO increased the SCFAs transporter because of the upregulation of Nhe1, Nhe3, and Mct4. Sequencing data revealed that KO improved bacteria α-diversity and increased Lachnospiraceae and Ruminococcaceae abundance, while it downregulated Erysipelatoclostridium, Prevotellaceae UCG_001, Olsenella, and Christensenellaceae R-7 under NLD in KO mice. Most of the differential bacterial genus were enriched in amino acid and carbohydrate metabolism pathways. Overall, Per2 knockout altered circadian oscillation in the large intestine, KO improved intestinal microbiota diversity, the increase in Clostridiales abundance led to the reduction in SCFAs in the circulation, concentrations of total SCFAs and acetate decreased, while butyrate increased and SCFAs transport was enhanced. These alterations may potentially lead to inflammation of the large intestine. Short-light treatment had minor impact on intestinal microbiome and metabolism.
Precision dietary interventions (e.g., altering proportions of dietary protein fractions) has significant implications for the efficiency of nutrient use in ruminants, as well as lowering their environmental footprint, specifically nitrogen (N) emissions. Soluble protein (SP) is defined as the protein fraction that is rapidly degraded in the rumen (e.g., non-protein N and true protein), and our previous study found that regulating SP levels could improve N efficiency in Hu sheep. Thus, the present study was conducted to explore in vitro how protein fractions with different SP levels modulate the rumen microbial community and its association with N metabolism. Four dietary treatments with different SP proportions and similar crude protein (CP) content (~14%) were formulated (% of CP): 20 (S20), 30 (S30), 40 (S40) and 50 (S50). Results showed that NH3-N content increased with increasing SP levels at 4, 12 and 24 h; TVFA, acetate, propionate and valerate were higher in S30 and S40 (p < 0.05) and had quadratic effects (p < 0.05). Moreover, dry matter digestibility (DMD) and N digestibility (ND) were all decreased with S20 and S50 (p < 0.05). The S30 and S40 treatments increased the abundance of Bacteroidetes and Prevotella (Prevotella_ruminicola) but decreased the abundance of Firmicutes and Proteobacteria (p < 0.05). Bacterial pathways related to amino acid and fatty acid metabolism also were enriched with S30 and S40. The abundance of Entodinium was increased with S30 and S40 and had a positive correlation with Prevotella, and these two genera also played an important role in N metabolism and VFA synthesis of this study. In conclusion, bacterial and protozoal communities were altered by the level of SP (% of CP), with higher SP levels (~50% of CP) increasing the microbial diversity but being detrimental to rumen N metabolism.
The period circadian regulator 2 (Per2) gene is important for the modulations of rhythmic homeostasis in the gut and liver; disruption will cause metabolic diseases, such as obesity, diabetes, and fatty liver. Herein, we investigated the alterations in intestinal metabolic and hepatic functions in Per2 knockout (Per2-/-, KO) and wild-type (Per2+/+, WT) mice. Growth indices, intestinal metabolomics, hepatic circadian rhythms, lipid metabolism, inflammation-related genes, antioxidant capacity, and transcriptome sequencing were performed after euthanasia. Data indicated that KO decreased the intestinal concentrations of amino acids such as γ-aminobutyric acid, aspartic acid, glycine, L-allothreonine, methionine, proline, serine, and valine while it increased the concentrations of carbohydrates such as cellobiose, D-talose, fucose, lyxose, and xylose compared with WT. Moreover, the imbalance of intestinal metabolism further seemed to induce liver dysfunction. Data indicated that Per2 knockout altered the expression of hepatic circadian rhythm genes, such as Clock, Bmal1, Per1, Per3, Cry1, and Cry2. KO also induced hepatic lipid metabolism, because of the increase of liver index and serum concentrations of low-density lipoprotein, and the upregulated expression of Pparα, Cyp7a1, and Cpt1. In addition, KO improved hepatic antioxidant capacity due to the increase activities of SOD and GSH-Px and the decrease in concentrations of MDA. Lastly, KO increased the relative expression levels of hepatic inflammation-related genes, such as Il-1β, Il-6, Tnf-α, Myd88, and Nf-κB p65, which may potentially lead to hepatic inflammation. Overall, Per2 knockout induces gut metabolic dysregulation and may potentially trigger alterations in hepatic antioxidant and inflammation responses.
The consequences of massive exogenous supplementation of SCFAs on rumen microbial fermentation and rumen epithelium health remain an area that requires further exploration. In our study, we sought to investigate the specific impact of administering high doses of exogenous acetate, propionate, and butyrate on rumen homeostasis, with a particular focus on understanding the interaction between the rumen microbiome and epithelium.
Intestinal microbiota dysbiosis is related to many metabolic diseases in human health. Meanwhile, as an irregular environmental light–dark (LD) cycle, short day (SD) may induce host circadian rhythm disturbances and worsen the risks of gut dysbiosis. Herein, we investigated how LD cycles regulate intestinal metabolism upon the destruction of gut microbes with antibiotic treatments. The growth indices, serum parameters, concentrations of short-chain fatty acids (SCFAs), and relative abundance of intestinal microbes were measured after euthanasia; intestinal contents, epithelial metabolomics, and hepatic transcriptome sequencing were also assessed. Compared with a normal LD cycle (NLD), SD increased the body weight, spleen weight, and serum concentration of aspartate aminotransferase, while it decreased high-density lipoprotein. Meanwhile, SD increased the relative abundance of the Bacteroidetes phylum while it decreased the Firmicutes phylum in the gut of ABX mice, thus leading to a disorder of SCFA metabolism. Metabolomics data revealed that SD exposure altered gut microbial metabolism in ABX mice, which also displayed more serious alterations in the gut epithelium. In addition, most differentially expressed metabolites were decreased, especially the purine metabolism pathway in epithelial tissue. This response was mainly due to the down-regulation of adenine, inosine, deoxyguanosine, adenylsuccinic acid, hypoxanthine, GDP, IMP, GMP, and AMP. Finally, the transcriptome data also indicated that SD has some negative effects on hepatic metabolism and endocrine, digestive, and disease processes. Overall, SD induced an epithelial and hepatic purine metabolism pathway imbalance in ABX mice, as well as the gut microbes and their metabolites, all of which could contribute to host metabolism and digestion, endocrine system disorders, and may even cause diseases in the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.