Periodontal ligament stem cells (PDLSCs), which reside in the perivascular space of the periodontium, possess characteristics of mesenchymal stem cells and are a promising tool for periodontal regeneration. Recently, great progress has been made in PDLSC transplantation. Investigators are attempting to maximize the proliferation and differentiation potential of PDLSCs by modifying culture conditions and applying growth factors. Nevertheless, problems remain. First, incomparability among different studies must be minimized by establishing standard guidelines for culture and identification of PDLSCs. Notably, attention should be paid to the biological safety of PDLSC transplantation. The present review updates the latest findings regarding PDLSCs and discusses standard criteria for culture and identification of PDLSCs. Finally, the review calls for careful consideration of PDLSC transplantation safety.
PCR-assisted binding site selection was used to define the sequence characteristics of high affinity YY1 binding sites. Compilation of the sequences of 189 selected oligonucleotides containing high affinity YY1 binding sites revealed two types of core sequence: ACAT and CCAT. ACAT cores were surrounded by other invariant nucleotides, forming the consensus GACATNTT. A search of the 73 kb human beta-like globin cluster with this consensus revealed eight matching motifs, six of which were located within 1-3 kb upstream of the gamma and beta genes. CCAT-type cores were more variable in surrounding sequence context; the consensus VDCCATNWY was found to fit 89% of the selected CCAT-containing oligonucleotides. A search of the human beta globin cluster with CCAT consensus sequences revealed 171 potential YY1 binding sites. Several of these were tested directly in gel shift assays and confirmed as high affinity YY1 binding sites. Finally, a strategy called motif-based phylogenetic analysis was employed to determine which of the 179 total sites are evolutionarily conserved. This analysis permits the detection of functionally conserved binding sites despite sequence differences present between the two species. The 21 conserved sites identified will serve as important starting points in further dissection of the possible role of YY1 in globin gene regulation.
A proper DNA damage response (DDR) is essential to maintain genome integrity and prevent tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion and their repair is orchestrated by the ATM kinase. ATM is activated via the MRE11–RAD50–NBS1 (MRN) complex along with its autophosphorylation at S1981 and acetylation at K3106. Activated ATM rapidly phosphorylates a vast number of substrates in local chromatin, providing a scaffold for the assembly of higher-order complexes that can repair damaged DNA. While reversible ubiquitination has an important role in the DSB response, modification of the newly identified ubiquitin-like protein ubiquitin-fold modifier 1 and the function of UFMylation in the DDR is largely unknown. Here, we found that MRE11 is UFMylated on K282 and this UFMylation is required for the MRN complex formation under unperturbed conditions and DSB-induced optimal ATM activation, homologous recombination-mediated repair and genome integrity. A pathogenic mutation MRE11(G285C) identified in uterine endometrioid carcinoma exhibited a similar cellular phenotype as the UFMylation-defective mutant MRE11(K282R). Taken together, MRE11 UFMylation promotes ATM activation, DSB repair and genome stability, and potentially serves as a therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.