InAs/GaAs quantum dot (QD) lasers were grown on silicon substrates using a thin Ge buffer and three-step growth method in the molecular beam epitaxy (MBE) system. In addition, strained superlattices were used to prevent threading dislocations from propagating to the active region of the laser. The as-grown material quality was characterized by the transmission electron microscope, scanning electron microscope, X-ray diffraction, atomic force microscope, and photoluminescence spectroscopy. The results show that a high-quality GaAs buffer with few dislocations was obtained by the growth scheme we developed. A broad-area edge-emitting laser was also fabricated. The O-band laser exhibited a threshold current density of 540 A/cm2 at room temperature under continuous wave conditions. This work demonstrates the potential of large-scale and low-cost manufacturing of the O-band InAs/GaAs quantum dot lasers on silicon substrates.
Direct epitaxial growth of III-V materials on complementary metal-oxide-semiconductor (CMOS)-compatible Si substrates has long been a scientific and engineering problem for next-generation light-emitters and non-volatile memories etc. The challenges arise from the lattice mismatch, thermal mismatch, and polarity mismatch between these materials. We report a detailed study of growing high-quality GaSb epilayers with low defect density on on-axis silicon substrates by interface engineering through all-molecular beam epitaxy (MBE) technology. We also systematically investigated the defect self-annihilation mechanism of GaSb epitaxially grown on on-axis Si (001) substrates. It was found that the misfit dislocation array was formed at the interface of AlSb/Si; threading dislocations and antiphase domain boundary annihilated at the initial GaSb layer promoted by the high-density AlSb islands, which was confirmed by transmission electron microscopy (TEM) results. Finally, a 2 µm GaSb epilayer with a step-flow surface, root-mean-square (RMS) roughness of 0.69 nm, and a rocking curve full width at half maximum (FWHM) of 251 arcsec was obtained. The photoluminescence in the near-infrared region of the GaSb/AlGaSb quantum well grown on Si substrate was also demonstrated. Our results highlighted the possible step towards the all-MBE direct growth of Sb-based infrared optoelectronic and microelectronic devices on CMOS-compatible Si substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.