The performance of lithium-ion battery is highly dependent on its interfacial chemistry, which is regulated by electrolytes. Conventional electrolyte typically contains polar solvents to dissociate Li salts. Here, we report a novel weakly-solvating electrolyte (WSE) that consists of a pure non-polar solvent, which leads to a peculiar solvation structure where ion pairs and aggregates prevail under a low salt concentration of 1.0 M. Importantly, WSE forms unique anion-derived interphases on graphite electrodes that exhibit fast-charging and long-term cycling characteristics. First-principles calculations unravel a general principle that the competitive coordination between anions and solvents to Li ion is the origin of different interfacial chemistries. By bridging the gap between solution thermodynamics and interfacial chemistry in batteries, this work opens a brand-new way towards precise electrolyte engineering for energy storage devices with desired properties.
Fundamentals, challenges, and solutions towards fast-charging graphite anodes are summarized in this review, with insights into the future research and development to enable batteries suitable for fast-charging application.
The lithium–sulfur (Li–S) battery is regarded as a next‐generation energy storage system due to its conspicuous merits in high theoretical capacity (1672 mAh g−1), overwhelming energy density (2600 Wh kg−1), and the cost‐effectiveness of sulfur. However, the practical application of Li–S batteries is still handicapped by a multitude of key challenges, mainly pertaining to fatal lithium polysulfide (LiPS) shuttling and sluggish sulfur redox kinetics. In this respect, rationalizing electrocatalytic processes in Li–S chemistry to synergize the entrapment and conversion of LiPSs is of paramount significance. This review summarizes recent progress and well‐developed strategies of the mediator design toward promoted Li–S chemistry. The current advances, existing challenges, and future directions are accordingly highlighted, aiming at providing in‐depth understanding of the sulfur reaction mechanism and guiding the rational mediator design to realize high‐energy and long‐life Li–S batteries.
Lithium‐ion batteries with routine carbonate electrolytes cannot exhibit satisfactory fast‐charging performance and lithium plating is widely observed at low temperatures. Herein we demonstrate that a localized high‐concentration electrolyte consisting of 1.5 M lithium bis(fluorosulfonyl)imide in dimethoxyethane with bis(2,2,2‐trifluoroethyl) ether as the diluent, enables fast‐charging of working batteries. A uniform and robust solid electrolyte interphase (SEI) can be achieved on graphite surface through the preferential decomposition of anions. The established SEI can significantly inhibit ether solvent co‐intercalation into graphite and achieve highly reversible Li+ intercalation/de‐intercalation. The graphite | Li cells exhibit fast‐charging potential (340 mAh g−1 at 0.2 C and 220 mAh g−1 at 4 C), excellent cycling stability (ca. 85.5 % initial capacity retention for 200 cycles at 4 C), and impressive low‐temperature performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.