To determine the winning bidder of renovation projects scientifically and reasonably, this paper constructs a bid evaluation model for renovation projects based on unascertained measure theory and the entropy weight method. According to the classification criteria of each index, a single-index unascertained measure function is constructed, and the unascertained measure of each index is calculated. The index weight is determined by the entropy weight method, the bid evaluation grade is determined by credible degree recognition criteria, superiority ranking is carried out, and the optimal result is obtained. Finally, an actual case study is used to verify the validity and practicability of the model. This case study shows that the model is an organic combination of the entropy weight method and unascertained measure theory and can provide a new idea for bid evaluation of renovation projects.
The regeneration and utilization of idle, old industrial buildings in urban areas has become a focus of urban development, owing to urban renewal and industrial structural adjustment. At the same time, the increasing demand for sports space has highlighted the insufficient supply of sports facilities in cities. To solve this dilemma, the transformation of old industrial buildings into sports venues has become another mode of recycling and reuse in recent years. Due to the many specialties, complex contents, and numerous influencing factors involved in the transformation process, the suitability of these buildings is uncertain. To ensure the suitability of the transformation project, the theory of old industrial buildings recycling and sports building design specifications was used. An index system was established for the evaluating the suitability of transforming old industrial buildings into stadiums, which included five first-level and twenty second-level indices. Based on the matter–element extension theory, a suitability evaluation model was constructed to transform old industrial buildings into sports venues. The correlation function of each evaluation index was calculated, and the index weight was determined using the entropy weight method to obtain the suitability grade of the renovation project, which was verified by the renovation project case. The research shows that the suitability level of the renovation project is level II, which is consistent with the actual situation, indicating that the evaluation model—based on entropy weight method and matter–element extension method—for the transformation of old industrial buildings and stadiums has high reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.