Ultrafast time-resolved differential reflectivity of Bi 2 Se 3 crystals is studied using optical pump-probe spectroscopy. Three distinct relaxation processes are found to contribute to the initial transient reflectivity changes. The deduced relaxation timescale and the sign of the reflectivity change suggest that electron-phonon interactions and defect-induced charge trapping are the underlying mechanisms for the three processes. After the crystal is exposed to air, the relative strength of these processes is altered and becomes strongly dependent on the excitation photon energy.
We present an infrared transmission spectroscopy study of the inter-Landau-level excitations in quasineutral epitaxial graphene nanoribbon arrays. We observed a substantial deviation in energy of the L(0(-1)) → L(1(0)) transition from the characteristic square root magnetic-field dependence of two-dimensional graphene. This deviation arises from the formation of an upper-hybrid mode between the Landau-level transition and the plasmon resonance. In the quantum regime, the hybrid mode exhibits a distinct dispersion relation, markedly different from that expected for conventional two-dimensional systems and highly doped graphene.
Cd_{3}As_{2} is a three-dimensional topological Dirac semimetal with connected Fermi-arc surface states. It has been suggested that topological superconductivity can be achieved in the nontrivial surface states of topological materials by utilizing the superconductor proximity effect. Here we report observations of both π and 4π periodic supercurrents in aluminum-Cd_{3}As_{2}-aluminum Josephson junctions. The π period is manifested by both the magnetic-field dependence of the critical supercurrent and the appearance of half-integer Shapiro steps in the ac Josephson effect. Our macroscopic theory suggests that the π period arises from interference between the induced bulk superconductivity and the induced Fermi-arc surface superconductivity. The 4π period is manifested by the missing first Shapiro steps and is expected for topological superconductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.