During insect larval-pupal metamorphosis, the obsolete larval organs and tissues undergo histolysis and programmed cell death to recycle cellular materials. It has been demonstrated that some cathepsins are essential for histolysis in larval tissues, but the process of tissue destruction is not well documented. Fat body, the homologous organ to mammalian liver and adipose tissue, goes through a distinct destruction process during larval-pupal transition. Herein, we found that most of the Bombyx proteases - including Bombyx cathepsin B (BmCatB) (BmCatLL-2), Bombyx cathepsin D (BmCatD), Bombyx cathepsin L like-1 (BmCatLL-1) and -2(BmCatLL-2), Bombyx fibroinase (BmBcp), Bombyx matrix metalloprotease (BmMmp), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs 1 (BmAdamTS-1), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs like (BmAdamTS L) and Bombyx cysteine protease inhibitor (Bmbcpi)- were expressed highly in fat body during feeding and metamorphosis, with a peak occurring during the nonfeeding moulting or prepupal stage, as well as being responsive to 20-hydroxyecdysone (20E). The aforementioned protease genes expression was upregulated by injection of 20E into the feeding larvae, while blocking 20E signalling transduction led to downregulation. Western blotting and immunofluorescent staining of BmCatB and BmBcp confirmed the coincident variation of their messenger RNA (mRNA) and protein level during the development and after the treatments. Moreover, BmCatB, BmBcp, BmMmp and BmAdamTS-1 RNA interference all led to blockage of larval fat body destruction. Taken together, we conclude that 20E regulates larval fat body destruction by upregulating related protease gene expression and protein levels during larval-pupal transition.
Protein acetylation plays potential roles in regulating autophagy occurrence. However, it varies greatly between yeast and mammals, and has not been thoroughly investigated in other organisms. Here, we reported that the components of BmAtg8–PE ubiquitin-like system (BmAtg3, BmAtg4, BmAtg7, and BmAtg8) in Bombyx mori were localized in the nucleus under nutrient-rich conditions, whereas they were exported to the cytoplasm upon autophagy induction. RNAi of BmP300 and inhibition of BmP300 activity resulted in nucleo-cytoplasmic translocation of BmAtg3 and BmAtg8, as well as premature induction of autophagy in the absence of stimulus. Conversely, RNAi of BmHDAC1 and inhibition of class I/II HADCs activities led to the nuclear accumulation of BmAtg3 and BmAtg8. In addition, acetylation sites in Atg proteins of BmAtg8–PE ubiquitin-like system were identified by mass spectrometry, and acetylation-site mutations caused nucleo-cytoplasmic translocation of BmAtg3, BmAtg4, and BmAtg8 along with autophagy promotion. Similarly, the subcellular localization of human ATG4b is determined by acetylation modification. In general, BmP300-mediated acetylation sequesters the components of BmAtg8–PE ubiquitin-like system in the nucleus, thus leading to the autophagy inhibition. Oppositely, BmHDAC1-mediated deacetylation leads to the nucleo-cytoplasmic translocation of the components of BmAtg8–PE ubiquitin-like system and promotes autophagy. This process is evolutionarily conserved between insects and mammals.
Apoptosis and autophagy play crucial roles during Bombyx mori metamorphosis and in response to various adverse conditions, including starvation. Recently, calpain, one of the major intracellular proteases, has been reported to be involved in apoptosis and autophagy in mammals. BmATG5 and BmATG6 have been identified to mediate apoptosis following autophagy induced by 20-hydroxyecdysone and starvation in B. mori. However, B. mori calpains and their functions remain unclear. In this study, phylogenetic analysis of calpains from B. mori, Drosophila melanogaster and Homo sapiens were performed and the results showed distinct close relationships of BmCalpain-A/B with DmCalpain-A/B, BmCalpain-C with DmCalpain-C, and BmCalpain-7 with HsCalpain-7. Then, the expression profiles of BmCalpains were analyzed by quantitative real-time polymerase chain reaction, and results showed that expression of BmCalpain-A/B, BmCalpain-C and BmCalpain-7 was significantly increased during B. mori metamorphosis and induced in the fat body and midgut of starved larvae, which is consistent with the expression profiles of BmAtg5, BmAtg6 and BmCaspase-1. Moreover, the apoptosis-associated cleavage of BmATG6 in Bm-12 cells was significantly enhanced when BmCalpain-A/B and BmCalpain-7 were induced by starvation, and was partially inhibited by the inhibitor of either calpain or caspase, but completely inhibited when both types of inhibitors were applied together. Our results indicated that BmCalpains, including BmCalpain-A/B, -C and -7, may be involved in autophagy and apoptosis during B. mori metamorphosis and after starvation, and may also contribute to the apoptosis-associated cleavage of BmATG6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.