To obtain more knowledge of the origin and genetic diversity of domestic horses in China, this study provides a comprehensive analysis of mitochondrial DNA (mtDNA) D-loop sequence diversity from nine horse breeds in China in conjunction with ancient DNA data and evidence from archaeological and historical records. A 247-bp mitochondrial D-loop sequence from 182 modern samples revealed a total of 70 haplotypes with a high level of genetic diversity. Seven major mtDNA haplogroups (A-G) and 16 clusters were identified for the 182 Chinese modern horses. In the present study, nine 247-bp mitochondrial D-loop sequences of ancient remains of Bronze Age horse from the Chifeng region of Inner Mongolia in China (c. 4000-2000a bp) were used to explore the origin and diversity of Chinese modern horses and the phylogenetic relationship between ancient and modern horses. The nine ancient horses carried seven haplotypes with rich genetic diversity, which were clustered together with modern individuals among haplogroups A, E and F. Modern domestic horse and ancient horse data support the multiple origins of domestic horses in China. This study supports the argument that multiple successful events of horse domestication, including separate introductions of wild mares into the domestic herds, may have occurred in antiquity, and that China cannot be excluded from these events. Indeed, the association of Far Eastern mtDNA types to haplogroup F was highly significant using Fisher's exact test of independence (P = 0.00002), lending support for Chinese domestication of this haplogroup. High diversity and all seven mtDNA haplogroups (A-G) with 16 clusters also suggest that further work is necessary to shed more light on horse domestication in China.
To further probe into whether swamp buffaloes were domesticated once or multiple times in China, this survey examined the mitochondrial DNA (mtDNA) Control Region (D-loop) diversity of 471 individuals representing 22 populations of 455 Chinese swamp buffaloes and 16 river buffaloes. Phylogenetic analysis revealed that Chinese swamp buffaloes could be divided into two distinct lineages, A and B, which were defined previously. Of the two lineages, lineage A was predominant across all populations. For predominant lineage A, Southwestern buffalo populations possess the highest genetic diversity among the three hypothesized domestication centers (Southeastern, Central, and Southwestern China), suggesting Southwestern China as the most likely location for the domestication of lineage A. However, a complex pattern of diversity is detected for the lineage B, preventing the unambiguous pinpointing of the exact place of domestication center and suggesting the presence of a long-term, strong gene flow among swamp buffalo populations caused by extensive migrations of buffaloes and frequent human movements along the Yangtze River throughout history. Our current study suggests that Southwestern China is the most likely domestication center for lineage A, and may have been a primary center of swamp buffalo domestication. More archaeological and genetic evidence is needed to show the process of domestication.
Analysis of the 367 mtDNA D-loop sequences (of which 241 sequences were collected from literature) of 399 bp in 13 Chinese domestic donkey breeds revealed 96 different haplotypes with 57 polymorphic sites. The haplotype diversity and the nucleotide diversity were 0.767-0.967 and 0.014-0.032, respectively, indicating abundant genetic diversity in Chinese domestic donkeys. The Neighbor-joining tree of Chinese domestic donkey sequences was constructed with 3 Nubian wild ass sequences, 3 Somali wild ass sequences and 6 Asian wild ass sequences. Our results suggest that the maternal ancestor of Chinese domestic donkeys is highly likely to be Somali and Nubian of African wild ass instead of Asian wild ass.
ABSTRACT. To reveal the genetic diversity and phylogenetic relationships between Chinese donkey breeds, 415 individuals representing ten breeds were investigated using ten microsatellite markers. The observed number of alleles, mean effective number of alleles (N E ), mean expected heterozygosity (H E ), and polymorphic information content (PIC) of each breed and polymorphic locus were analyzed. The results showed that seven (HTG7, HTG10, AHT4, HTG6, HMS6, HMS3, and HMS7) of ten microsatellite loci were polymorphic. The mean PIC, H E , and N E of seven polymorphic loci for the ten donkey breeds were 0.7679, 0.8072, and 6.0275, respectively. These results suggest that domestic Chinese donkey breeds possess higher levels of genetic diversity and heterozygosity than foreign donkeys. A neighbor-joining tree based on Nei's standard genetic distance showed that there was close genetic distance among Xinjiang, Qingyang, Xiji, and Guanzhong donkey breeds. In addition, Mongolia and Dezhou donkey breeds were placed in the same category. The phylogenetic tree revealed that the genetic relationships between Chinese donkey breeds are consistent with their geographic distribution and breeding history.
To determine the Y chromosome genetic diversity and paternal origin of Chinese cattle, 369 bulls from 17 Chinese native cattle breeds and 30 bulls from Holstein and four bulls from Burma were analyzed using a recently discovered USP9Y marker that could distinguish between taurine and indicine cattle more efficiently. In total, the taurine Y1, Y2 haplogroup and indicine Y3 haplogroup were detected in 7 (1.9 %), 193 (52.3 %) and 169 (45.8 %) individuals of 17 Chinese native breeds, respectively, although these frequencies varied amongst the Chinese native cattle breeds examined. Y2 dominates in northern China (91.4 %), while Y3 dominates in southern China (81.2 %). Central China is an admixture zone with Y2 predominating overall (72.0 %). Our results demonstrate that Chinese cattle have two paternal origins, one from B. taurus (Y2) and the other from B. indicus (Y3). The Y1 haplogroup may originate from the imported beef cattle breeds in western countries. The geographical distributions of the Y2 and Y3 haplogroup frequencies reveal a pattern of male indicine introgression from south to north China, and male taurine introgression from north to south China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.