Oxidative stress-induced dysfunction or apoptosis in retinal pigment epithelial (RPE) cells is an important cause of dry age-related macular degeneration (AMD). Although phillyrin has been shown to exert significant antioxidant effects, the underlying mechanism of action remains unclear. The purpose of this study was to investigate the protective effect of phillyrin on hydrogen peroxide- (H2O2-) induced oxidative stress damage in RPE cells and the potential mechanism involved. It was found that phillyrin significantly protected RPE cells from H2O2 cytotoxicity. Furthermore, phillyrin alleviated oxidative stress-induced apoptosis via inhibition of endogenous and exogenous apoptotic pathways. Compared with the H2O2-treated group, the expressions of cleaved caspase-3, cleaved caspase-9, cleaved polymerase (PARP), death receptor Fas, and cleaved caspase-8, as well as Bax/Bcl-2 ratio were decreased in RPE cells after the phillyrin intervention. In addition, phillyrin reversed the oxidative stress-induced reductions in superoxide dismutase (SOD) and glutathione (GSH) levels and annulled the elevations in reactive oxygen species (ROS) and malondialdehyde (MDA), thereby restoring oxidant-antioxidant homeostasis. Phillyrin treatment upregulated the expressions of cyclin E, cyclin-dependent kinase 2 (CDK2), and cyclin A and downregulated the expressions of p21 and p-p53, thereby reversing the G0/G1 cell cycle arrest in H2O2-treated RPE cells. Pretreatment with phillyrin also increased the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductases-1 (NQO-1) in RPE cells and inhibited the formation of Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 protein complex. Thus, phillyrin effectively protected RPE cells from oxidative stress through activation of the Nrf2 signaling pathway and inhibition of the mitochondria-dependent apoptosis pathway.
Rhizoma paridis is a popularly-used Chinese medicine in clinics, based on the pharmacodynamic properties of its saponin components. The four main saponins in Rhizoma paridis are designated saponins I, II, VI, and VII. At present, much attention is focused on the anticancer effect of Rhizoma paridis which is manifested in its cytotoxicity to various cancer cells. The purpose of this study was to investigate the hepatocellular toxicities of the four saponins in Rhizoma paridis and the relative intensities of their cytotoxic effects. It was found that the four saponins were cytotoxic to two types of hepatocytes-HL-7702 and HepaRG cells. The cytotoxicities of the four saponins to the two cell models were compared. One of the most cytotoxic saponins was Rhizoma paridis saponin I (PSI). This was used to determine the mechanism of hepatocellular toxicity. Results from MTT assays demonstrated that the four saponins induced apoptosis of the two hepatocyte models in a dose-dependent and time-dependent manner. In addition, fluorescent 4′,6-diamidino-2-phenylindole (DAPI) staining was used to observe the morphological changes of HepaRG cells after saponin administration. Further, as the concentration increased, PSI-induced lactate dehydrogenase (LDH) release from HepaRG cells increased gradually. In addition, PSI enhanced the levels of reactive oxygen species (ROS) and blocked the S and G2 phases of the cell cycle in HepaRG cells. A western blot indicated that PSI upregulated the protein expression levels of p53, p21, and Fas. Furthermore, the PSI-induced changes in the p53 protein increased the Bax/bcl-2 ratio, resulting in enhancement of the release of mitochondrial cytochrome c, activation of caspases-3, -8, and -9, poly-ADP ribose polymerase (PARP), and ultimately apoptosis. Increased Fas protein activated caspase-8, which led to the activation of caspase-3 and its downstream PARP protein, resulting in cell apoptosis. These results indicate that PSI induced apoptosis in HepaRG cells through activation of ROS and death receptor pathways. The results obtained in this study suggest that the hepatocellular toxicity of saponins in Rhizoma paridis should be considered during the clinical application of this drug. In addition, they provide a reference for future anti-cancer studies on Rhizoma paridis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.