Collective perception is a new paradigm to extend the limited horizon of individual vehicles. Incorporating with the recent vehicle-2-x (V2X) technology, connected and autonomous vehicles (CAVs) can periodically share their sensory information, given that traffic management authorities and other road participants can benefit from these information enormously. Apart from the benefits, employing collective perception could result in a certain level of transmission redundancy, because the same object might fall in the visible region of multiple CAVs, hence wasting the already scarce network resources. In this paper, we analytically study the data redundancy issue in highway scenarios, showing that the redundant transmissions could result in heavy loads on the network under medium to dense traffic. We then propose a probabilistic data selection scheme to suppress redundant transmissions. The scheme allows CAVs adaptively adjust the transmission probability of each tracked objects based on the position, vehicular density and road geometry information. Simulation results confirm that our approach can reduce at most 60% communication overhead in the meanwhile maintain the system reliability at desired levels. INDEX TERMS Collective perception, connected and autonomous vehicles, V2X communications, data redundancy.
Trajectory tracking is a key technology for precisely controlling autonomous vehicles. In this paper, we propose a trajectory-tracking method based on model predictive control. Instead of using the forward Euler integration method, the backward Euler integration method is used to establish the predictive model. To meet the real-time requirement, a constraint is imposed on the control law and the warm-start technique is employed. The MPC-based controller is proved to be stable. The simulation results demonstrate that, at the cost of no or a little increase in computational time, the tracking performance of the controller is much better than that of controllers using the forward Euler method. The maximum lateral errors are reduced by 69.09%, 47.89% and 78.66%. The real-time performance of the MPC controller is good. The calculation time is below 0.0203 s, which is shorter than the control period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.