Postganglionic sympathetic neurons and satellite glial cells are the two major cell types of the peripheral sympathetic ganglia. Sympathetic neurons project to and provide neural control of peripheral organs and have been implicated in human disorders ranging from cardiovascular disease to peripheral neuropathies. Here we show that satellite glia regulate synaptic activity of cultured postnatal sympathetic neurons, providing evidence for local ganglionic control of sympathetic drive. In addition to modulating neuron-to-neuron cholinergic neurotransmission, satellite glia promote synapse formation and contribute to neuronal survival. Examination of the cellular architecture of the rat sympathetic ganglia in vivo shows this regulation of neuronal properties takes place during a developmental period in which neuronal morphology and density are actively changing and satellite glia enwrap sympathetic neuronal somata. Cultured satellite glia make and release factors that promote neuronal activity and that can partially rescue the neurons from cell death following nerve growth factor deprivation. Thus, satellite glia play an early and ongoing role within the postnatal sympathetic ganglia, expanding our understanding of the contributions of local and targetderived factors in the regulation of sympathetic neuron function.
Orphan G Protein Coupled Receptors (GPCRs) are GPCRs whose endogenous ligands are unknown or still debated. Due to the lack of pharmacological modulators, the physiological function of orphan GPCRs is understudied. However, relevant physiological roles associated with orphan GPCRs have been revealed by analysis of animal models and genome wide association studies illuminating an untapped potential for drug discovery. G Protein Coupled Receptor class C Group 5 Member B (GPRC5B) is among the most expressed GPCRs in the central nervous system. Thus, the expression profiling of GPRC5B is an essential step toward understanding GPRC5B function in health and disease. In this study, we generated new GPRC5B polyclonal antibodies and investigated the expression levels of GPRC5B across different organs and brain regions. We identified high levels of GPRC5B glycosylation both in transfected cells and in mouse brain. Moreover, in situ hybridization imaging analysis indicated that Gprc5b was expressed at the highest level in olfactory bulb, hippocampus, cerebellum, and pons. To dissect expression within various neuronal populations, we conducted a comprehensive spatial profiling of Gprc5b across excitatory and inhibitory neuronal types in medial prefrontal cortex, motor cortex, hippocampal regions, hypothalamus, and cerebellum. Overall, we discovered that GABAergic neurons displayed higher Gprc5b expression levels than glutamatergic neurons in most of the analyzed regions with the important exception of the hippocampal dentate gyrus. Overall, the expression analysis of GPRC5B in mouse brain will guide functional studies ultimately positioning GPRC5B in pathophysiological mechanisms and drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.