Summary Grass stomata can balance gas exchange and evaporation effectively in rapidly changing environments via their unique anatomical features. Although the key components of stomatal development in Arabidopsis have been largely elucidated over the past decade, the molecular mechanisms that govern stomatal development in grasses are poorly understood. Via the genome editing system and T‐DNA insertion lines, the key transcriptional factors (TFs) regulating stomatal development in rice (Oryza sativa) were knocked out. A combination of genetic and biochemical assays subsequently revealed the functions of these TFs. OsSPCH/OsICE is essential for the initiation of stomatal lineage. OsMUTE/OsICE determines meristemoid to guard mother cell (GMC) transition. OsFAMA/OsICE influences subsidiary mother cell asymmetric division and mature stoma differentiation. OsFLP regulates the orientation of GMC symmetrical division. More importantly, we found that OsSCR/OsSHR controls the initiation of stomatal lineage cells and the formation of subsidiary cells. The transcription of OsSCR is activated by OsSPCH and OsMUTE. This study characterised the functions of master regulatory TFs that control each stomatal developmental stage in rice. Our findings are helpful for elucidating how various species reprogramme the molecular mechanisms to generate different stomatal types during evolution.
Purpose: How exosomal RNAs released within the bone marrow microenvironment affect proteasome inhibitors' (PI) sensitivity of multiple myeloma is currently unknown. This study aims to evaluate which exosomal RNAs are involved and by which molecular mechanisms they exert this function.Experimental Design: Exosomes were characterized by dynamic light scattering, transmission electron microscopy, and Western blot analysis. Coculture experiments were performed to assess exosomal RNAs transferring from mesenchymal stem cells (MSC) to multiple myeloma cells. The role of PSMA3-AS1 in PI sensitivity was further evaluated in vivo. To determine the prognostic significance of circulating exosomal PSMA3 and PSMA3-AS1, a cohort of patients with newly diagnosed multiple myeloma was enrolled to study. Cox regression models and Kaplan-Meier curves were used to analyze progression-free survival (PFS) and overall survival (OS).Results: We identified that PSMA3 and PSMA3-AS1 in MSCs could be packaged into exosomes and transferred to myeloma cells, thus promoting PI resistance. PSMA3-AS1 could form an RNA duplex with pre-PSMA3, which transcriptionally promoted PSMA3 expression by increasing its stability. In xenograft models, intravenously administered siPSMA3-AS1 was found to be effective in increasing carfilzomib sensitivity. Moreover, plasma circulating exosomal PSMA3 and PSMA3-AS1 derived from patients with multiple myeloma were significantly associated with PFS and OS.Conclusions: This study suggested a unique role of exosomal PSMA3 and PSMA3-AS1 in transmitting PI resistance from MSCs to multiple myeloma cells, through a novel exosomal PSMA3-AS1/PSMA3 signaling pathway. Exosomal PSMA3 and PSMA3-AS1 might act as promising therapeutic targets for PI resistance and prognostic predictors for clinical response.
Multiple myeloma (MM) is characterized by the decreased osteogenic potential of mesenchymal stem cells (MSCs). Communication between cancer cells and cancer stromal cells is a driving factor in tumor progression. Understanding the myeloma-stroma interactions is critical to the development of effective strategies that can reverse bone diseases. Here we identified that bioactive lncRNA RUNX2-AS1 in myeloma cells could be packed into exosomes and transmitted to MSCs, thus repressing the osteogenesis of MSCs. RUNX2-AS1, which arises from the antisense strand of RUNX2, was enriched in MSCs derived from MM patients (MM-MSCs). RUNX2-AS1 was capable of forming an RNA duplex with RUNX2 pre-mRNA at overlapping regions and this duplex transcriptionally repressed RUNX2 expression by reducing the splicing efficiency, resulting in decreased osteogenic potential of MSCs. In vivo mouse models, administered an inhibitor of exosome secretion, GW4869, was found to be effective in preventing bone loss, sustained by both bone formation and anticatabolic activities. Therefore, exosomal lncRNA RUNX2-AS1 may serve as a potential therapeutic target for bone lesions in MM. In summary, our results indicated a key role of exosomal lncRUNX2-AS1 in transferring from MM cells to MSCs in osteogenic differentiation, through a unique exosomal lncRUNX2-AS1/RUNX2 pathway.
Charge density wave (CDW) as a novel effect in two-dimensional transition metal dichalcogenides (TMDs) has obtained a rapid rise of interest for its physical nature and potential applications in oscillators and memory devices. Here, we report var der Waals epitaxial growth of centimeter-scale 1T-VTe2 thin films on mica by molecular beam epitaxy. The VTe2 thin films showed sudden resistance change at temperatures of 240 and 135 K, corresponding to two CDW phase transitions driven by temperature. Moreover, the phase transitions can be driven by an electric field due to local Joule heating, and the corresponding resistance states are nonvolatile and controllable, which could be applied to the memory device where the logic states can be switched by an electric field. The multistage CDW phase transitions in the VTe2 thin films could be contributed to electron–phonon coupling in the two-dimensional VTe2, which is supported by twice pronounced Raman blue shifts of the vibration modes associated with in-plane phonons at CDW phase transition temperature. The results open up a new platform for understanding the microscopic physical essence and electrical control of CDW phases of TMDs, expanding the functionalities of these materials for memory applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.