There are differences in lipid deposition in fatty-type (FT) and lean-type (LT) ducks. Fatty ducks have a higher rate of sebum and abdominal fat, lower meat yield and hepatic lipid contents than LT ducks. However, the underlying changes in gene expression profiles regarding the lipid deposition between FT and LT ducks have not yet been clarified. To identify the differentially expressed genes in the liver, sebum, and abdominal fat between both ducks, we identified the gene expression profiles in the liver, sebum, and abdominal fat derived from FT and LT ducks by comparing the multistage transcriptomes. Our results showed that there were 622, 1536, and 224 differentially expressed genes (DEGs) in the liver, sebum, and abdominal fat between the FT and LT ducks, respectively. KEGG enrichment showed that the DEGs related to lipid metabolism were enriched in the biosynthesis of unsaturated fatty acid, glycerolipid and fatty acid metabolism in the liver; and were enriched in the fatty acid metabolism, fatty acid biosynthesis, glycerolipid metabolism, linoleic acid metabolism, and the PPAR signaling pathway in the sebum. There was no pathway related to a lipid metabolism enriched in abdominal fat. A gene functional analysis showed that the DEGs involved in adipogenesis were found to be upregulated. In contrast, those involved in lipolysis were downregulated in the liver and serum of FT ducks. The DEGs showed that ATP-binding cassette sub-family G member 8 (ABCG8), fatty acid synthase (FASN), and phospholipid transfer protein (PLTP) were highly expressed in the liver of FT ducks, and acyl-CoA synthetase long-chain family member3 (ACSL3), ACSL5, ACSL6, 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha (AGPAT1), AGPAT9, ELOVL fatty acid elongase 6 (ELVOL6), fatty acid desaturase 1 (FADS1), FADS2, monoacylglycerol O-acyltransferase 1 (MOGAT1), serine/threonine kinase 17a (STK17A), and serine/threonine kinase 39 (STK39) were highly expressed in the sebum of FT ducks. A weighted correlation network analysis (WGCNA) of the DEGs showed ABCG8, FADS2, ACSL5, and ELOVL6 positively correlated with hepatic fatty acid synthesis, and AGPAT1, STK17A, STK32A, FADS1, and ACSL3 positively correlated with lipid deposition in the sebum. In summary, ABCG8 might be the key gene for the reduced hepatic lipid deposition in FT Pekin ducks, and FADS2, ACSL5, ELOVL6, AGPAT1, STK17A, STK32A, FADS1, and ACSL3 were the key genes for lipid deposition in the sebum of FT Pekin ducks. Our results provide new insights into the transcriptome regulation in lipid deposition of Pekin ducks and will be helpful for duck breeding.
The reasons for differences in lipid depositions between fatty-type (F-T) and lean-type (L-T) ducks remain unknown. The present study aimed to compare the growth performance, lipid deposition, and gene expression related to lipid droplet formation in F-T and L-T Pekin ducks. One-day-old, 140 each L-T and F-T male ducks were selected and distributed separately into 20 replicate cages. All ducks were fed commercial diets up to 35 d of age. F-T ducks had a higher average daily gain from 21 to 28 d of age. On 35-day-old, F-T ducks had higher serum levels of high- and low-density lipoprotein cholesterol, cholesterol, albumin, and hydroxybutyrate dehydrogenase activity than L-T ducks. F-T ducks had higher abdominal fat and subcutaneous fat percentages than those in L-T ducks. Liver histological examination showed that L-T ducks contained more lipid droplets in the liver, which gradually decreased with increasing age. The average adipocyte area and diameter of abdominal fat and subcutaneous fat in the F-T and L-T ducks increased with age and were higher in F-T ducks than those in L-T ducks. Furthermore, the gene expression of perilipin 1, perilipin 2, angiopoietin-like protein 4, adipose triglyceride lipase, alpha/beta-hydrolase domain-containing protein 5 (ABHD5), and serine/threonine kinase 17a in the liver, abdominal fat, and subcutaneous fat of F-T ducks was higher than that in L-T ducks, and it increased with age. Compared to L-T ducks, F-T ducks had higher expression of ABHD5 in the abdominal fat and subcutaneous fat and lower expression in the liver. Thus, F-T ducks displayed lower hepatic lipid deposition and a higher percentage of abdominal fat and subcutaneous fat, suggesting that F-T ducks had higher lipid storage capacity due to increased gene expression related to lipid droplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.