Fatty-type (FT) Pekin ducks exhibit higher lipid deposition than lean-type (LT) ducks. The gut microbiota plays an important role in modulating fat metabolism. We compared the growth performance, slaughter performance, and cecal microbiota of FT and LT Pekin ducks and analyzed the role of cecal microbiota in lipid deposition in Pekin ducks. A total of 140 1-day-old FT and LT Pekin ducks with similar body weights were randomly assigned to 10 cages, with 14 ducks in each replicate. All ducks were fed commercial diets from 28 to 42 days of age. Results showed that the average body weight and feed intake of FT ducks were higher than those of LT ducks. The breast muscle and eviscerated percentages of LT ducks were higher than those of FT ducks; the abdominal fat and sebum percentages of LT ducks were lower than those of FT ducks at 6 weeks of age (P < 0.01). 16S DNA sequencing of the cecal microbiota revealed that the bacterial abundance differed between FT and LT ducks at 4 and 6 weeks of age. The abundance of Firmicutes was higher, while that of Fusobacteria and Fusobacterium was lower in LT ducks than in FT ducks at 4 weeks of age. The abundance of Spirochaetes was higher, while that of Firmicutes and Bacteroides was lower in LT ducks than in FT ducks at 6 weeks of age. The abundance of Spirochaetes and Brachyspira in LT ducks was higher at 6 weeks than at 4 weeks of age. Interestingly, the abundance of Firmicutes and Bacteroides in FT ducks was higher at 6 weeks of age than at 4 weeks of age, while that of Fusobacteria and Fusobacterium was lower at 6 weeks than at 4 weeks of age. Linear discriminant analysis effect size analysis showed that Spirochaetes, Brachyspira, Alistipes, Campylobacter, Megamonas, Butyricicoccus, and Fusobacteria may be involved in the fat metabolism pathway as specific markers. We reveal the differences in microbial abundance in the cecal microbiota between FT and LT Pekin ducks and provide an insight into the role of cecal microbiota in lipid deposition in Pekin ducks.
The reasons for differences in lipid depositions between fatty-type (F-T) and lean-type (L-T) ducks remain unknown. The present study aimed to compare the growth performance, lipid deposition, and gene expression related to lipid droplet formation in F-T and L-T Pekin ducks. One-day-old, 140 each L-T and F-T male ducks were selected and distributed separately into 20 replicate cages. All ducks were fed commercial diets up to 35 d of age. F-T ducks had a higher average daily gain from 21 to 28 d of age. On 35-day-old, F-T ducks had higher serum levels of high- and low-density lipoprotein cholesterol, cholesterol, albumin, and hydroxybutyrate dehydrogenase activity than L-T ducks. F-T ducks had higher abdominal fat and subcutaneous fat percentages than those in L-T ducks. Liver histological examination showed that L-T ducks contained more lipid droplets in the liver, which gradually decreased with increasing age. The average adipocyte area and diameter of abdominal fat and subcutaneous fat in the F-T and L-T ducks increased with age and were higher in F-T ducks than those in L-T ducks. Furthermore, the gene expression of perilipin 1, perilipin 2, angiopoietin-like protein 4, adipose triglyceride lipase, alpha/beta-hydrolase domain-containing protein 5 (ABHD5), and serine/threonine kinase 17a in the liver, abdominal fat, and subcutaneous fat of F-T ducks was higher than that in L-T ducks, and it increased with age. Compared to L-T ducks, F-T ducks had higher expression of ABHD5 in the abdominal fat and subcutaneous fat and lower expression in the liver. Thus, F-T ducks displayed lower hepatic lipid deposition and a higher percentage of abdominal fat and subcutaneous fat, suggesting that F-T ducks had higher lipid storage capacity due to increased gene expression related to lipid droplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.