The gut microbiota is closely associated with the health of the host and is affected by many factors, including exercise. In this study, we compared the gut microbial changes and exercise performance over a 14-week period in mice that performed exercise (NE; n = 15) and mice that did not perform exercise (NC; n = 15). Mice were subjected to stool collection and exercise tests one week prior to adaptive training and after 2, 6, 10, and 14 weeks of exercise. Bacteria associated with the stool samples were assessed via Illumina-based 16S rRNA gene sequencing. While there was no significant difference in body weight between the groups (p > 0.05), the NE group had a significantly higher exercise performance from weeks 2–14 (p < 0.01) and lower fat coefficient (p < 0.01) compared with the NC group. The Shannon index of the gut microbiota in the NC group was higher than that in the NE group at weeks 6 and 10, and the Chao1 index was higher than that in the NE group at week 14. Exercise performance positively correlated with the relative abundance of Phascolarctobacterium. Grouped time series data analysis demonstrated that Bifidobacteria, Coprococcus, and one unnamed genus in the Clostridiales order were significantly increased in the NE group, which correlated with increased glucose, flavonoid, arginine, and proline metabolism. In conclusion, moderate-intensity treadmill exercise significantly increased the exercise performance of mice and changed the core bacteria and bacterial metabolic activity. These results provide a reference for studying the effects of exercise intervention and exercise performance on the gut microbiota of mice.
Background: Immunological liver injury (ILI) is a common liver disease and lacks potent drugs for treatment. Artemisia argyi Lévl. et Vant. (A. argyi), a medicinal and edible homologous plant usually used in diet therapy to cure various liver diseases, provides a great option for the prevention of ILI. Purpose: To investigate the effect that ethyl acetate extract of A. argyi (AaEA) on Concanavalin A (ConA)-induced ILI and the mechanism of regulating Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways. Methods: The chemical components of AaEA were studied by LC-MS. In animal experiments, the positive control group was administrated diammonium glycyrrhizinate (DIG, 100 mg/kg), while different doses of AaEA groups (AaEA-H, AaEA-M, AaEA-L) were pretreated with AaEA 2.00, 1.00, and 0.50 g/kg, respectively, by intragastric for seven days, once every day. Then, ConA (12.00 mg/kg) was used through tail intravenous injection to establish the ILI model. The blood samples and livers were collected to test the degree of liver dysfunction, inflammation, oxidative stress, histopathological changes, and cell apoptosis. Real-time PCR and Western blotting analysis were used to explain the mechanism of regulating Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways. Results: The way in which AaEA prevents liver damage in immunological liver injury (ILI) mice caused by ConA was investigated for the first time. Pretreatment with AaEA reduced the expression of ALT, AST, and inflammatory factors (TNF-α and IFN-γ). Meanwhile, AaEA also reduced MDA levels but upregulated the contents of IL-4, SOD, and GSH-px, alleviating oxidative stress induced by ILI. Western blotting and real-time PCR analysis demonstrated that AaEA could regulate the expression level and relative mRNA expression of key proteins on Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways. Finally, 504 components from AaEA were identified by LC-MS analysis, mainly including flavones, phenolic acids, and terpenoids with anti-inflammatory and liver protective activities, which highlights the potential of AaEA for diet treatment of ILI. Conclusion: AaEA can work against ConA-induced ILI in mice by regulating Bax/Bcl-2 and TLR4/MyD88/NF-κB signaling pathways, which has the potential to be a great strategy for the prevention of ILI.
Infectious diseases caused by bacteria and fungi are threatening human health all over the world. It is an increasingly serious problem that the efficacies of some antibacterial and antifungal agents have been weakened by the drug resistance of some bacteria and fungi, which makes a great need for new antibiotics. Sesquiterpenoids, with abundant structural skeleton types and a wide range of bioactivities, are considered as good candidates to be antibacterial and antifungal agents. In the past decades, many sesquiterpenoids were isolated from plants and fungi that exhibited good antibacterial and antifungal activities. In this review, the names, source, structures, antibacterial and antifungal degrees, and mechanisms of sesquiterpenoids with antibacterial and antifungal activity from 2012 to 2022 are summarized, and the structure-activity relationship of these sesquiterpenoids against bacteria and fungi is also discussed.
Erjing prescription (EJP) was an ancient formula that was recorded in the General Medical Collection of Royal Benevolence of the Song Dynasty. It has been frequently used to treat type 2 diabetes mellitus (T2DM) in the long history of China. The formula consists of Lycium barbarum L. and Polygonatum sibiricum F. Delaroche with a ratio of 1 : 1. This study aimed to identify the potential effects and mechanisms of EJP treatment T2DM. The target proteins and possible pathways of EJP in T2DM treatment were investigated by the approach of network pharmacology and real-time PCR (RT-PCR). 99 diabetes-related proteins were regulated by 56 bioactive constituents in EJP in 26 signal pathways by Cytoscape determination. According to GO analysis, 606 genes entries have been enriched. The PPI network suggested that AKT1, EGF, EGFR, MAPK1, and GSK3β proteins were core genes. Among the 26 signal pathways, the PI3K-AKT signal pathway was tested by the RT-PCR. The expression level of PI3K p85, AKT1, GSK3β, and Myc mRNA of this pathway was regulated by EJP. The study based on network pharmacology and RT-PCR analysis revealed that the blood sugar level was regulated by EJP via regulating the PI3K-AKT signal pathway. Plenty of new treatment methods for T2DM using EJP were provided by network pharmacology analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.