SUMMARY Brassinosteroids (BRs) regulate a wide range of developmental and physiological processes in plants through a receptor-kinase signaling pathway that controls the BZR transcription factors. Here we use transcript profiling and chromatin-immunoprecipitation microarray (ChIP-chip) experiments to identify 953 BR-regulated BZR1 target (BRBT) genes. Functional studies of selected BRBTs further demonstrate roles in BR-promotion of cell elongation. The BRBT genes reveal numerous molecular links between the BR signaling pathway and downstream components involved in developmental and physiological processes. Furthermore, the results reveal extensive crosstalk between BR and other hormonal and light signaling pathways at multiple levels. For example, BZR1 not only controls the expression of many signaling components of other hormonal and light pathways, but also co-regulates common target genes with light-signaling transcription factors. Our results provide a genomic map of steroid hormone actions in plants, which reveals a regulatory network that integrates hormonal and light signaling pathways for plant growth regulation.
Brassinosteroids bind to the extracellular domain of the receptor kinase BRI1 to activate a signal transduction cascade that regulates nuclear gene expression and plant development. Many components of the brassinosteroid signaling pathway have been identified and studied in detail. However, the substrate of BRI1 kinase that transduces the signal to downstream components remains unknown. Proteomic studies of plasma membrane proteins lead to the identification of three homologous BR-signaling kinases (BSK1, BSK2 and BSK3). The BSKs are phosphorylated by BRI1 in vitro and interact with BRI1 in vivo. Genetic and transgenic studies demonstrate that the BSKs represent a small family of kinases that activate BR signaling downstream of BRI1. These results demonstrate that BSKs are the substrates of BRI1 kinase that activate downstream BR signal transduction. One-sentence summaryBrassinosteroid signaling kinases identified by proteomics Cell-surface receptor kinases activate cellular signal transduction pathways upon perception of extracellular signals, thereby mediating cellular responses to the environment and to other cells. The Arabidopsis genome encodes over 400 receptor-like kinases (RLKs) (1). Some of these RLKs function in growth regulation and plant responses to hormonal and environmental signals. However, the molecular mechanism of RLK signaling to immediate downstream components remains poorly understood, as no RLK substrate that mediates signal transduction has been established in Arabidopsis (2). BRI1 is an RLK that functions as the major receptor for the steroid hormones brassinosteroids (2). Brassinosteroids bind the extracellular domain of BRI1 to activate its kinase activity, initiating a signal transduction cascade that regulates nuclear gene expression and a wide range of developmental and physiological processes ( fig. S1) (3). Many components of the BR signaling pathway have been identified and much detail has been revealed about how BR activates BRI1(4-8) and how phosphorylation by downstream GSK3-like kinase BIN2 regulates the activity of the nuclear transcription factors that mediate §To whom correspondence should be addressed:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.