Heat is a common source of stress in aquatic environments and can alter the physiological and metabolic functions of aquatic animals, especially their intestinal function. Here, the effects of heat stress on the structure and function of the intestine and the characteristics of the intestinal microbiota were studied in sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂ hybrid F1). Sturgeons were exposed to sub-extreme (24°C) and extreme (28°C) high water temperatures for 12 days. The heat stress caused systemic damage to the intestine of sturgeons, which displayed severe enteritis in the valve intestine. The microbial diversity analysis showed that heat stress led to the disorder in intestinal microbiota, manifesting as an explosive increase in the abundance of thermophilic intestinal pathogens such as Plesiomonas, Cetobacterium, and Aeromonas and causing physiological dysfunction in the sturgeons. The disorder was followed by significant inhibition of intestinal digestion with reduced chymotrypsin, α-amylase, and lipase activities in the valve intestine and of antioxidant function with reduced peroxidase (POD) and catalase (CAT) activities. Simultaneously, heat stress reduced the thermal tolerance of sturgeons by reducing Grp75 expression and damaged the valve intestine’s repair ability with increased Tgf-β expression. The results confirmed that heat stress damaged the sturgeon intestines obviously and disturbed the intestinal microbiota, resulting in serious physiological dysfunction. The present study investigated the mechanism of the effect of heat stress on the sturgeon intestine and will help develop strategies to improve the resistance to thermal stress for wild and cultured sturgeons.
Erythrocytes are important for gas transport and exchange in animals and play an important role in maintaining normal functions of the body. The purpose of this study was to observe the changes in erythrocyte morphology during the development of juvenile sturgeon (Acipenser baeri ♀×Acipenser schrenckii ♂ hybrid F1) and to describe the relationship between erythrocyte morphology and development. We compared the erythrocyte morphology of juvenile sturgeon in three developmental stages. The results showed that the blood index of the sturgeon in different age classes was significantly different. The erythrocyte volume in the blood became smaller and the shape of erythrocytes changed from circular to elliptical. With the increase in age, the number of selfdividing erythrocytes, and the types and numbers of organelles in the erythrocytes, decreased. The results demonstrated that the morphology and the internal structure of erythrocytes develop to be more beneficial for gas transport reflecting the needs for juvenile sturgeon maintenance and environmental changes.
The lack of detailed information on nutritional requirement results in limited feeding in Siberian sturgeon. In this study, resveratrol, a versatile natural extract, was supplemented in the daily diet, and the digestive ability and microbiome were evaluated in the duodena and valvular intestines of Siberian sturgeon. The results showed that resveratrol increased the activity of pepsin, α-amylase, and lipase, which was positively associated with an increase in the digestive ability, but it did not influence the final body weight. Resveratrol improved the digestive ability probably by distinctly enhancing intestinal villus height. Microbiome analysis revealed that resveratrol changed the abundance and composition of the microbial community in the intestine, principally in the duodenum. Random forests analysis found that resveratrol significantly downregulated the abundance of potential pathogens (Citrobacter freundii, Vibrio rumoiensis, and Brucella melitensis), suggesting that resveratrol may also improve intestinal health. In summary, our study revealed that resveratrol improved digestive ability and intestinal health, which can contribute to the development of functional feed in Siberian sturgeon.
Heat stress induced by global warming has damaged the well-being of aquatic animals. The skin tissue plays a crucial role as a defense barrier to protect organism, however, little is known about the effect of heat stress on fish skin, particularly in cold-water fish species. Here, we investigated the effects of mild heat stress (24°C, MS) and high heat stress (28°C, HS) on Siberian sturgeon skin using RNA-seq, histological observation, and microbial diversity analysis. In RNA-seq, 8,819 differentially expressed genes (DEGs) in MS vs. C group and 12,814 DEGs in HS vs. C group were acquired, of which the MS vs. C and HS vs. C groups shared 3,903 DEGs, but only 1,652 DEGs were successfully annotated. The shared DEGs were significantly enriched in pathways associating with mucins synthesis. Histological observation showed that the heat stresses significantly reduced the number of skin mucous cells and induced the damages of epidermis. The microbial diversity analysis elicited that heat stress markedly disrupted the diversity and abundance of skin microbiota by increasing of potential pathogens (Vibrionimonas, Mesorhizobium, and Phyllobacterium) and decreasing of probiotics (Bradyrhizobium and Methylovirgula). In conclusion, this study reveals that heat stress causes adverse effects on sturgeon skin, reflecting in decreasing the mucus secretion and disordering the mucosal microbiota, which may contribute to develop the preventive strategy for heat stress caused by global warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.