To acquire the developing trend and ways of mechanization of tea plucking, with analyzing the developing backgrounds and situations of tea plucking machine both at home and abroad, this paper obtains the conclusion that there are several countries that have conducted a lot of studies on tea plucking machine, such as Japan, England, France, India, Australia and Argentina. Among others, Japan goes ahead, where lots of researches have been conducted in the highest developing level. The article also analyses the reason why China has a poor mechanization of tea plucking and points out existing problems. Finally, some advices and measures for developing Chinese domestic mechanization of tea plucking are given.
In response to the problems of low fertilizer application efficiency, poor operation quality, and uneven application of fertilizer by domestic tea garden trenching and fertilizing machines, an automatic depth-adjusting double screw trenching and fertilizing machine was designed. The machine uses a double spiral furrowing and fertilizer application method, which can complete the integrated operation of furrowing, fertilizer application, and mulching at one time. The key components of the machine such as the screw-type fertilizer discharger, trenching, and fertilizer application mechanism are designed using theoretical analysis, and the trenching depth is automatically adjusted through the hydraulic control system to maintain a consistent depth. A single-factor test and a quadratic regression rotary orthogonal test were conducted to select the diameter of the spiral fertilizer discharger, the rotational speed of the spiral fertilizer discharger, and the rotational speed of the trenching and fertilizer application mechanisms. Based on these tests, the fertilizer application performance of the fertilizer machine was evaluated, and a mathematical model of the fertilizer application volume and coefficient of variation was established. The influence of the test factors on the coefficient of variation was also analyzed. In the study, 58.36 and 480.35 r/min were found to be the optimal rotational speeds for spiral fertilizer discharge and trenching and fertilizer application, respectively, while 88.90 mm was found to be the optimal diameter for spiral fertilizer discharge. The coefficient of variation for the spiral fertilizer discharge was 3.95%, which meets the tea plantation’s fertilizer application requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.