A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25 C to 65C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.
Purpose
The purpose of this paper is to present a dual-mode proximity sensor composed of inductive and capacitive sensing modes, which can help the robot distinguish different objects and obtain distance information at the same time. A systematic study of sensor response to various objects and the function of cooperation sensing is needed. Furthermore, the application in the field of robotic area needs to be discussed.
Design/methodology/approach
Numerical modeling of each sensing modes and simulations based on finite element analysis method has been carried out to verify the designed dual-mode sensor. A number of objects composed of different materials are used to research the cooperation perception and proximity sensing functions. In addition, the proposed sensor is used on the palm of a mechanical hand as application experiment.
Findings
The characteristics of the sensor are summarized as follows: the sensing range of inductive mode is 0-5.6 mm for detecting a copper block and the perceive range of capacitive mode is 0-5.1 mm for detecting a plastic block. The collaborative perceive tests validated that the non-ferromagnetism metals can be distinguished by inductive mode. Correspondingly, ferromagnetism metals and dielectric objects are differentiated by capacitive mode. Application experiments results reveal that both plastic bottle and steel bottle could be detected and differentiated. The experimental results are in agreement with those of simulations.
Originality value
This paper provides a study of dual-mode proximity sensor in terms of design, experiments and application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.