We introduce here a novel assay for the detection of platelet-derived growth factor BB (PDGF-BB) via hybridization chain reaction (HCR) based on an aptameric system, where stable DNA monomers assemble only upon exposure to a target PDGF-BB aptamer. In this process, two complementary stable species of biotinylated DNA hairpins coexist in solution until the introduction of initiator aptamer strands triggers a cascade of hybridization events that yields nicked double helices analogous to alternating copolymers. In detail, the aptamer firstly opens the hairpins in the solution, creating long concatemers, and then reacts with the antibody captured PDGF-BB on the well surface. Moreover, several experimental conditions including different PDGF-BB aptamers, the spacer length of the selected aptamer and hairpin, etc. are investigated and optimized. Our results show that the coupling of HCR to aptamer triggers for the amplification detection of PDGF-BB achieves a better performance in the fluorescence detection of PDGF-BB as compared to the traditional antibody-antigen-aptamer assays. Upon modification, the approach presented herein could be extended to detect other types of targets. We believe such advancements will represent a significant step towards improved diagnostics and more personalized medical treatment and environmental monitoring.
We describe a signal amplification assay for the simultaneous detection of HIV-1 and HIV-2 via a quantum dot (QD) layer-by-layer assembled polystyrene microsphere (PS) composite in a homogeneous format. The crucial point of this composite is the core-shell system. PS is utilized as the core and QDs as the shell. Based on the high affinity of streptavidin and biotin, QDs are assembled layer-by-layer on the surface of the PS as amplification labels. Biotinylated reporter probe is combined with the PS-QDs conjugate and then hybridized with target DNA immobilized on the surface of a 96-well plate. Using this approach, each target DNA corresponds to a large number of QDs and the fluorescence signal is greatly enhanced. Two QD colors (605 and 655 nm) are used to detect dual-target DNAs simultaneously. Taking advantage of the enzyme-free reaction and high sensitivity, this PS-QD-based sensor can be used in simple 'mix and detection' assays. Our results show that this technology has potential application in rapid point-of-care testing, gene expression studies, high-throughput screening and clinical diagnostics.
A bendable and thermally stable solar-blind ultraviolet (UV) photodetector has been demonstrated based on Ni/amorphous Ga2O3 (a-Ga2O3)/a-AlN/Cu foil structure. Here, Cu foil can simultaneously act as a bendable substrate and withstand a high-temperature environment. The ultra-wide bandgap a-AlN insulating layer can withstand mechanical tensile stress and effectively act as an insulating layer between a-Ga2O3 and Cu. Thus, the a-Ga2O3-based photodetector shows stable UV response characteristics with different bending radii and temperatures. The photodetector has high responsivity of 0.518 A W−1 and a fast response time of 0.17 s under 200 °C temperature with a 1.46 cm bending radius. With exceptional bendability and thermal stability, this a-Ga2O3-based photodetector has potential applications in harsh environments such as high-power bendable electron devices, flame detection, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.