Unmanned aerial vehicle (UAVs) have become one of the widely used remote sensing platforms and played a critical role in the construction of smart cities. However, due to the complex environment in urban scenes, secure, and accurate data acquisition brings great challenges to 3-D modeling and scene updating. Optimal trajectory planning of UAVs and accurate data collection of onboard cameras are nontrivial issues in urban modeling. This study presents the principle of optimized views photogrammetry and verifies its precision and potential in large-scale 3-D modeling. Different from oblique photogrammetry, optimized views photogrammetry uses rough models to generate and optimize UAV trajectories, which is achieved through the consideration of model point reconstructability and view point redundancy. Based on the principle of optimized views photogrammetry, this study first conducts a precision analysis of 3-D models by using UAV images of optimized views photogrammetry and then executes a large-scale case study in the urban region of Qingdao City, China, to verify its engineering potential. By using GCPs for image orientation precision analysis and terrestrial laser scanning (TLS) point clouds for model quality analysis, experimental results show that optimized views photogrammetry could construct stable image connection networks and could achieve comparable image orientation accuracy. Benefiting from the accurate image acquisition strategy, the quality of mesh models significantly improves, especially for urban areas with serious occlusions, in which 3 to 5 times of higher accuracy has been achieved. Besides, the case study in Qingdao City verifies that optimized views photogrammetry can be a reliable and powerful solution for the large-scale 3-D modeling in complex urban scenes.
Stereo matching is a fundamental task for 3D scene reconstruction. Recently, deep learning based methods have proven effective on some benchmark datasets, such as KITTI and Scene Flow. UAVs (Unmanned Aerial Vehicles) are commonly utilized for surface observation, and their captured images are frequently used for detailed 3D reconstruction due to high resolution and low-altitude acquisition. At present, the mainstream supervised learning network requires a significant amount of training data with ground-truth labels to learn model parameters. However, due to the scarcity of UAV stereo matching datasets, the learning-based network cannot be applied to UAV images. To facilitate further research, this paper proposes a novel pipeline to generate accurate and dense disparity maps using detailed meshes reconstructed by UAV images and LiDAR point clouds. Through the proposed pipeline, this paper constructs a multi-resolution UAV scenario dataset, called UAVStereo, with over 34k stereo image pairs covering 3 typical scenes. As far as we know, UAVStereo is the first stereo matching dataset of UAV low-altitude scenarios. The dataset includes synthetic and real stereo pairs to enable generalization from the synthetic domain to the real domain. Furthermore, our UAVStereo dataset provides multi-resolution and multi-scene images pairs to accommodate a variety of sensors and environments. In this paper, we evaluate traditional and state-of-the-art deep learning methods, highlighting their limitations in addressing challenges in UAV scenarios and offering suggestions for future research. The dataset is available at https://github.com/rebecca0011/UAVStereo.git
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.