Background The prevalence of depressive and anxiety symptoms in patients with COVID-19 is higher than usual. Previous studies have shown that there are drug-to-drug interactions between antiretroviral drugs and antidepressants. Therefore, an effective and safe treatment method was needed. Cognitive behavioral therapy (CBT) is the first-line psychological therapy in clinical treatment. Computerized CBT (cCBT) was proven to be an effective alternative to CBT and does not require face-to-face therapy between a therapist and the patient, which suited the COVID-19 pandemic response. Objective This study aims to evaluate the efficacy of the cCBT program we developed in improving depressive and anxiety symptoms among patients with COVID-19. Methods We customized a cCBT program focused on improving depressive and anxiety symptoms among patients with COVID-19, and then, we assessed its effectiveness. Screening was based on symptoms of depression or anxiety for patients who scored ≥7 on the Hamilton Depression Rating Scale (HAMD17) or the Hamilton Anxiety Scale (HAMA). A total of 252 patients with COVID-19 at five sites were randomized into two groups: cCBT + treatment as usual (TAU; n=126) and TAU without cCBT (n=126). The cCBT + TAU group received the cCBT intervention program for 1 week. The primary efficacy measures were the HAMD17 and HAMA scores. The secondary outcome measures were the Self-Rating Depression Scale (SDS), Self-Rating Anxiety Scale (SAS), and Athens Insomnia Scale (AIS). Assessments were carried out pre- and postintervention. The patients’ symptoms of anxiety and depression in one of the centers were assessed again within 1 month after the postintervention assessment. Results The cCBT + TAU group displayed a significantly decreased score on the HAMD17, HAMA, SDS, SAS, and AIS after the intervention compared to the TAU group (all P<.001). A mixed-effects repeated measures model revealed significant improvement in symptoms of depression (HAMD17 and SDS scores, both P<.001), anxiety (HAMA and SAS scores, both P<.001), and insomnia (AIS score, P=.002) during the postintervention and follow-up periods in the cCBT + TAU group. Additionally, the improvement of insomnia among females (P=.14) and those with middle school education (P=.48) in the cCBT + TAU group showed no significant differences when compared to the TAU group. Conclusions The findings of this study suggest that the cCBT program we developed was an effective nonpharmacological treatment for symptoms of anxiety, depression, and insomnia among patients with COVID-19. Further research is warranted to investigate the long-term effects of cCBT for symptoms of anxiety, depression, and insomnia in patients with COVID-19. Trial Registration Chinese Clinical Trial Registry ChiCTR2000030084; http://www.chictr.org.cn/showprojen.aspx?proj=49952
N 6-methyladenine (N 6-mA) of DNA is an emerging epigenetic mark in mammalian genome. Levels of N 6-mA undergo drastic fluctuation during early embryogenesis, indicative of active regulation. Here we show that the 2-oxoglutarate-dependent oxygenase ALKBH1 functions as a nuclear eraser of N 6-mA in unpairing regions (e.g., SIDD, Stress-Induced DNA Double Helix Destabilization regions) of mammalian genomes. Enzymatic profiling studies revealed that ALKBH1 prefers bubbled or bulged DNAs as substrate, instead of single-stranded (ss-) or double-stranded (ds-) DNAs. Structural studies of ALKBH1 revealed an unexpected "stretch-out" conformation of its "Flip1" motif, a conserved element that usually bends over catalytic center to facilitate substrate base flipping in other DNA demethylases. Thus, lack of a bending "Flip1" explains the observed preference of ALKBH1 for unpairing substrates, in which the flipped N 6-mA is primed for catalysis. Co-crystal structural studies of ALKBH1 bound to a 21-mer bulged DNA explained the need of both flanking duplexes and a flipped base for recognition and catalysis. Key elements (e.g., an ALKBH1-specific α1 helix) as well as residues contributing to structural integrity and catalytic activity were validated by structurebased mutagenesis studies. Furthermore, ssDNA-seq and DIP-seq analyses revealed significant co-occurrence of base unpairing regions with N 6-mA in mouse genome. Collectively, our biochemical, structural and genomic studies suggest that ALKBH1 is an important DNA demethylase that regulates genome N 6-mA turnover of unpairing regions associated with dynamic chromosome regulation.
Recent studies show that NK cells play important roles in murine biliary atresia (BA), and a temporary immunological gap exists in this disease. In this study, we found high-mobility group box-1 (HMGB1) and TLRs were overexpressed in human and rotavirus-induced murine BA. The overexpressed HMGB1 released from the nuclei of rotavirus-infected cholangiocytes, as well as macrophages, activated hepatic NK cells via HMGB1-TLRs-MAPK signaling pathways. Immature NK cells had low cytotoxicity on rotavirus-injured cholangiocytes due to low expression of TLRs, which caused persistent rotavirus infection in bile ducts. HMGB1 up-regulated the levels of TLRs of NK cells and promoted NK cell activation in an age-dependent fashion. As NK cells gained increasing activation as mice aged, they gained increasing cytotoxicity on rotavirus-infected cholangiocytes, which finally caused BA. Adult NK cells eliminated rotavirus-infected cholangiocytes shortly after infection, which prevented persistent rotavirus infection in bile ducts. Moreover, adoptive transfer of mature NK cells prior to rotavirus infection decreased the incidence of BA in newborn mice. Thus, the dysfunction of newborn NK cells may, in part, participate in the immunological gap in the development of rotavirus induced murine BA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.