Background and aimGut microbiota may contribute to regulate colonic motility, which is involved in the etiology of constipation. Fecal microbiota transplantation (FMT) has been demonstrated to restore intestinal homeostasis. The aim of this study was to evaluate the clinical outcomes and prognostic factors of FMT for the treatment of slow transit constipation (STC).MethodsFifty-two patients with STC received standardized FMT and were followed up for 6 months. Bowel habit, colonic transit time, constipation-related symptoms (PAC-SYM score), quality of life (PAC-QOL score), treatment satisfaction scores and adverse events were monitored. The primary efficacy endpoint was the proportion of patients having on average three or more complete spontaneous bowel movements (CSBMs) per week.ResultsThe primary efficacy endpoint was achieved in 50.0%, 38.5% and 32.7% of patients over week intervals 3–4, 9–12 and 21–24, respectively (P < 0.01 for all comparisons). Significant improvements were also observed in other bowel movement assessments, colonic transit time, constipation-related symptoms and quality of life; but all improvements diminished at weeks 12 and 24. Incompleteness of evacuation served as the only factor associated with efficacy. No serious treatment-related adverse events were observed.ConclusionThis study suggested FMT was effective and safe for STC, while a late loss of efficacy was also observed. A lower degree of sensation of incompleteness predicted a better outcome.
Malignant tumors typically undergo an atavistic regression characterized by the overexpression of embryonic genes and proto-oncogenes, including a variety of cancer/testis antigens (CTAs) that are testis-derived and are not expressed or expressed in trace amounts in somatic tissues. Based on this theory, we established a new method to identify unknown CTAs, the spermatogenic cells-specific monoclonal antibody-defined cancer/testis antigen (SADA) method. Using the SADA method, we identified BAP31 as a novel CTA and confirmed that BAP31 expression is associated with progression and metastasis of several cancers, particularly in cervical cancer. We found that BAP31 was significantly upregulated in stage I, II, and III cervical cancer patients and highly correlated with poor clinic outcomes. We further demonstrated that BAP31 regulates cervical cancer cell proliferation by arresting the cell cycle at the G0/G1 stage and that depletion of BAP31 inhibits hyper-proliferation. Moreover, depletion of BAP31 inhibits cervical cancer cell invasion and migration by regulating the expression and subcellular localization of Drebrin, M-RIP, SPECC1L, and Nexilin, and then affect the cytoskeleton assemblage. Finally, the depletion of BAP31 prevents cervical cancer progression and metastasis in vivo. These findings provide a new method for identifying novel CTAs as well as mechanistic insights into how BAP31 regulates cervical cancer hyper-proliferation and metastasis.
The present study shows that application of gastrointestinal decompression after colorectostomy can not effectively reduce postoperative complications. On the contrary, it may increase the incidence rate of fever, pharyngolaryngitis and pulmonary infection. These strategies of early removing gastrointestinal decompression and early oral feeding in the patients undergoing colorectostomy are feasible and safe and associated with reduced postoperative discomfort and can accelerate the return of bowel function and improve rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.