Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm−2 and Li plating capacities up to 4 mAh cm−2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.
Utilization of lithium (Li) metal anode in solid‐state batteries (SSBs) with sulfide solid‐state electrolyte (SSE) is hindered by the instable Li/SSE interface. A general solution to solve this problem is to place an expensive indium (In) foil between the SSE and Li, while it decreases the output voltage and thus the energy density of the battery. In this work, an alternative strategy is demonstrated to boost the cycling performances of SSB by wrapping a graphene oxide (GO) layer on the anode. According to density functional theory results, initial deposition of a thin Li layer on the defective GO sheets leads to the formation of a dipole structure, due to the electron‐withdrawing ability of GO acting on Li. By incorporating GO sheets in a nanocomposite of copper‐cuprous oxide‐GO (Cu‐Cu
2
O‐GO, CCG), a composite Li anode enables a high coulombic efficiency above 99.5% over 120 cycles for an SSB using Li
10
GeP
2
S
12
SSE and LiCoO
2
cathode, and the sulfide SSE is not chemically decomposed after cycling. The highest occupied molecule orbital/lowest unoccupied molecular orbital energy gap of this Li/GO dipole structure likely stretches over those of Li and sulfide SSE, enabling stabilized Li/SSE interface that can replace the expensive In layer as Li protective structure in SSBs.
Silicone (Si) is one type of anode materials with intriguingly high theoretical capacity. However, the severe volume change associated with the repeated lithiation and delithiation processes hampers the mechanical/electrical integrity of Si anodes and hence reduces the battery's cycle‐life. To address this issue, sequence‐defined peptoids are designed and fabricated with two tailored functional groups, “OH” and “COOH”, as cross‐linkable polymeric binders for Si anodes of LIBs. Experimental results show that both the capacity and stability of such peptoids‐bound Si anodes can be significantly improved due to the decreased cracks of Si nanoparticles. Particularly, the 15‐mer peptoid binder in Si anode can result in a much higher reversible capacity (ca. 3110 mAh g−1) after 500 cycles at 1.0 A g−1 compared to other reported binders in literature. According to the density functional theory (DFT) calculations, it is the functional groups presented on the side chains of peptoids that facilitate the formation of Si−O binding efficiency and robustness, and then maintain the integrity of the Si anode. The sequence‐designed polymers can act as a new platform for understanding the interactions between binders and Si anode materials, and promote the realization of high‐performance batteries.
Designing new cathodes with high capacity and moderate potential is the key to break energy density ceiling imposed by current intercalation chemistry on rechargeable battery. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy-densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.