The NLRP3 inflammasome has a fundamental role in host defence against microbial pathogens and its deregulation may cause diverse inflammatory diseases. NLRP3 protein expression is a rate-limiting step for inflammasome activation, thus its expression must be tightly controlled to maintain immune homeostasis and avoid detrimental effects. However, how NLRP3 expression is regulated remains largely unknown. In this study, we identify E3 ubiquitin ligase TRIM31 as a feedback suppressor of NLRP3 inflammasome. TRIM31 directly binds to NLRP3, promotes K48-linked polyubiquitination and proteasomal degradation of NLRP3. Consequently, TRIM31 deficiency enhances NLRP3 inflammasome activation and aggravates alum-induced peritonitis in vivo. Furthermore, TRIM31 deficiency attenuates the severity of dextran sodium sulfate (DSS)-induced colitis, an inflammatory bowel diseases model in which NLRP3 possesses protective roles. Thus, our research describes a mechanism by which TRIM31 limits NLRP3 inflammasome activity under physiological conditions and suggests TRIM31 as a potential therapeutic target for the intervention of NLRP3 inflammasome related diseases.
Defect engineering modified graphite carbon nitride (g-C3N4) has been widely used in various photocatalytic systems due to the enhanced catalytic activity by multiple defect sites (such as vacancies or functional...
Zeolitic imidazole frameworks (ZIFs) offer rich platforms for rational design and construction of high-performance nonprecious-metal oxygen reduction reaction (ORR) catalysts owing to their flexibility, hierarchical porous structures, and high surface area. Herein, an Fe, Cu-coordinated ZIF-derived carbon framework (Cu@Fe-N-C) with a well-defined morphology of truncated rhombic dodecahedron is facilely prepared by introducing Fe 2+ and Cu 2+ during the growth of ZIF-8, followed by pyrolysis. The obtained Cu@Fe-N-C, with bimetallic active sites, large surface area, high nitrogen doping level, and conductive carbon frameworks, exhibits excellent ORR performance. It displays 50 mV higher half-wave potential (0.892 V) than that of Pt catalysts in an alkaline medium and comparable performance to Pt catalysts in an acidic medium. In addition, it also has excellent durability and methanol resistance ability in both acidic and alkaline solutions, which makes it one of the best Pt-free catalysts reported to date for ORR. Impressively, when being employed as a cathode catalyst in zinc-air batteries, Cu@Fe-N-C presents a higher peak power density of 92 mW cm −2 than that of Pt/C (74 mW cm −2 ) as well as excellent durability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.