Demyelination in the adult CNS can be followed by extensive repair. However, in multiple sclerosis, the differentiation of oligodendrocyte lineage cells present in demyelinated lesions is often inhibited by unknown factors. In this study, we test whether myelin debris, a feature of demyelinated lesions and an in vitro inhibitor of oligodendrocyte precursor differentiation, affects remyelination efficiency. Focal demyelinating lesions were created in the adult rat brainstem, and the naturally generated myelin debris was augmented by the addition of purified myelin. After quantification of myelin basic protein mRNA expression from lesion material obtained by laser capture microdissection and supported by histological data, we found a significant impairment of remyelination, attributable to an arrest of the differentiation and not the recruitment of oligodendrocyte precursor cells. These data identify myelin as an inhibitor of remyelination as well as its well documented inhibition of axon regeneration.
CH3NH3PbI3‐xClx is a commonly used chemical formula to represent the methylammonium lead halide perovskite fabricated from mixed chlorine‐ and iodine‐containing salt precursors. Despite the rapid progress in improving its photovoltaic efficiency, fundamental questions remain regarding the atomic ratio of Cl in the perovskite as well as the reaction mechanism that leads to its formation and crystallization. In this work we investigated these questions through a combination of chemical, morphological, structural and thermal characterizations. The elemental analyses reveal unambiguously the negligible amount of Cl atoms in the CH3NH3PbI3‐xClx perovskite. By studying the thermal characteristics of methylammonium halides as well as the annealing process in a polymer/perovskite/FTO glass structure, we show that the formation of the CH3NH3PbI3‐xClx perovskite is likely driven by release of gaseous CH3NH3Cl (or other organic chlorides) through an intermediate organometal mixed halide phase. Furthermore, the comparative study on CH3NH3I/PbCl2 and CH3NH3I/PbI2 precursor combinations with different molar ratios suggest that the initial introduction of a CH3NH3+ rich environment is critical to slow down the perovskite formation process and thus improve the growth of the crystal domains during annealing; accordingly, the function of Cl− is to facilitate the release of excess CH3NH3+ at a relatively low annealing temperatures.
Two-dimensional semiconductors are structurally ideal channel materials for the ultimate atomic electronics after silicon era. A long-standing puzzle is the low carrier mobility (μ) in them as compared with corresponding bulk structures, which constitutes the main hurdle for realizing high-performance devices. To address this issue, we perform a combined experimental and theoretical study on atomically thin MoS2 field effect transistors with varying the number of MoS2 layers (NLs). Experimentally, an intimate μ-NL relation is observed with a 10-fold degradation in μ for extremely thinned monolayer channels. To accurately describe the carrier scattering process and shed light on the origin of the thinning-induced mobility degradation, a generalized Coulomb scattering model is developed with strictly considering device configurative conditions, that is, asymmetric dielectric environments and lopsided carrier distribution. We reveal that the carrier scattering from interfacial Coulomb impurities (e.g., chemical residues, gaseous adsorbates, and surface dangling bonds) is greatly intensified in extremely thinned channels, resulting from shortened interaction distance between impurities and carriers. Such a pronounced factor may surpass lattice phonons and serve as dominant scatterers. This understanding offers new insight into the thickness induced scattering intensity, highlights the critical role of surface quality in electrical transport, and would lead to rational performance improvement strategies for future atomic electronics.
We report ambipolar charge transport in α-molybdenum ditelluride (MoTe2 ) flakes, whereby the temperature dependence of the electrical characteristics was systematically analyzed. The ambipolarity of the charge transport originated from the formation of Schottky barriers at the metal/MoTe2 contacts. The Schottky barrier heights as well as the current on/off ratio could be modified by modulating the electrostatic fields of the back-gate voltage (Vbg) and drain-source voltage (Vds). Using these ambipolar MoTe2 transistors we fabricated complementary inverters and amplifiers, demonstrating their feasibility for future digital and analog circuit applications.
The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/β-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/β-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active β-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a β-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active β-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active β-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active β-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/β-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode. 8 Correspondence should be addressed to Y.S. (yshi@coh.org). 6,7 These authors contributed equally to this work.Note: Supplementary Information is available on the Nature Cell Biology website. AUTHOR CONTRIBUTIONSY.S. conceived and designed the study. Y.S., Q.Q., G.S., W.L., S.Y., P.Y. and C.Z. performed the experiments and analysed the data. Y.S., Q.Q., G.S., F.H.G. and R.M.E. interpreted the data. Y.S. wrote the paper with comments from Q.Q., G.S., R.T.Y., F.H.G. and R.M.E. COMPETING FINANCIAL INTERESTSThe authors declare no competing financial interests. The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. Neural stem cells are defined as a subset of undifferentiated precursors that retain the ability to proliferate and self-renew and have the capacity to give rise to both neuronal and glial lineages [1][2][3][4] . Under normal conditions, neurogenesis in the adult mammalian brain is restricted to two discrete germinal centres: the subgranular layer of the hippocampal dentate gyrus 3 and the subventricular zones of the lateral ventricles 5,6 . A complete understanding of adult neural stem cells requires the identification of molecules that determine the self-renewal and multipotent characteristics of these cells.TLX is an orphan nuclear receptor that is expressed in vertebrate forebrains 7,8 . We showed previously that TLX is an important regulator of neural stem cell maintenance and self-renewal in both embryo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.