Reperfusion injury is still a major challenge that impedes neuronal survival in ischemic stroke. However, the current clinical treatments are remained on single pathological process, which are due to lack of comprehensive neuroprotective effects. Herein, a macrophage‐disguised honeycomb manganese dioxide (MnO
2
) nanosphere loaded with fingolimod (FTY) is developed to salvage the ischemic penumbra. In particular, the biomimetic nanoparticles can accumulate actively in the damaged brain via macrophage‐membrane protein‐mediated recognition with cell adhesion molecules that are overexpressed on the damaged vascular endothelium. MnO
2
nanosphere can consume excess hydrogen peroxide (H
2
O
2
) and convert it into desiderated oxygen (O
2
), and can be decomposed in acidic lysosome for cargo release, so as to reduce oxidative stress and promote the transition of M1 microglia to M2 type, eventually reversing the proinflammatory microenvironment and reinforcing the survival of damaged neuron. This biomimetic nanomedicine raises new strategy for multitargeted combined treatment of ischemic stroke.
Reperfusion injury exists as the major obstacle to full recovery of neuron functions after ischemic stroke onset and clinical thrombolytic therapies. Complex cellular cascades including oxidative stress, neuroinflammation, and brain vascular impairment occur within neurovascular units, leading to microthrombus formation and ultimate neuron death. In this work, a multitarget micelle system is developed to simultaneously modulate various cell types involved in these events. Briefly, rapamycin is encapsulated in self‐assembled micelles that are consisted of reactive oxygen species (ROS)‐responsive and fibrin‐binding polymers to achieve micelle retention and controlled drug release within the ischemic lesion. Neuron survival is reinforced by the combination of micelle facilitated ROS elimination and antistress signaling pathway interference under ischemia conditions. In vivo results demonstrate an overall remodeling of neurovascular unit through micelle polarized M2 microglia repair and blood–brain barrier preservation, leading to enhanced neuroprotection and blood perfusion. This strategy gives a proof of concept that neurovascular units can serve as an integrated target for ischemic stroke treatment with nanomedicines.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most intractable malignancy, with an only 6% 5-year relative survival rate. The dismal therapeutic effect is attributed to the chemotherapy resistance and unique pathophysiology with abundant inflammatory cytokines and abnormal hyperplasia of extracellular matrix (ECM). Based on the theory that bone marrow mesenchymal stem cells (BM-MSCs) can influence the tumorous microenvironment and malignant growth of PDAC, we employed exosomes (Exos) derived from BM-MSCs as PDAC-homing vehicles to surpass the restrictions of pathological ECM and increase the accumulation of therapeutics in tumor site. To overcome chemoresistance of PDAC, paclitaxel (PTX) and gemcitabine monophosphate (GEMP)—an intermediate product of gemcitabine metabolism—were loaded in/on the purified Exos. In this work, the Exo delivery platform showed superiorities in homing and penetrating abilities, which were performed on tumor spheroids and PDAC orthotopic models. Meanwhile, the favorable anti-tumor efficacy
in vivo
and
in vitro
, plus relatively mild systemic toxicity, was found. Loading GEMP and PTX, benefitting from the naturally PDAC selectivity, the Exo platform we constructed performs combined functions on excellent penetrating, anti-matrix and overcoming chemoresistance (
Scheme 1
). Worth expectantly, the Exo platform may provide a prospective approach for targeted therapies of PDAC.
Anticancer therapies, which can induce cell death and elevate antitumor immune response in the meantime, are considered as effective treatments for many types of cancers. Immunogenic cell death (ICD) induced by chemodrugs is a promising and typical strategy to achieve cell cytotoxicity and immunological enhancement together. However, due to the low level of ICD induction and less tumor‐targeting accumulation, application of traditional ICD inducers is limited. Here, tumor‐targeting core–shell magnetic nanoparticles (ETP‐PtFeNP:α‐enolase targeting peptide modified Pt‐prodrug loaded Fe
3
O
4
nanoparticles) are developed to reinforce ICD induction of loaded‐oxaliplatin (IV) prodrug. After tumor‐targeting accumulation and endocytosis, platinum (IV) complexes are activated by intracellular reductive elimination to yield and release the Pt (II) congener, oxaliplatin, leading to DNA lesions and reactive oxygen species (ROS) generation. Simultaneously, in‐progress‐released ferric ions elicit highly toxic ROS (·OH or ·OOH) burst and interfere with the intracytoplasmic redox balance (like endoplasmic reticulum stress), leading to ICD‐associated immunogenicity enhancement and specific antitumor immune responses to kill the tumor cells synergistically. Meanwhile, the transverse relaxation rate
R
2
of ETP‐PtFeNP is remarkably increased by more than three times while triggered by reductant, suggesting ETP‐PtFeNP a high‐sensitivity
T
2
contrast agent for magnetic resonance imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.